Pilot-Scale Combustion of Fast-Pyrolysis Bio-Oil: Ash Deposition and Gaseous Emissions

被引:24
|
作者
Khodier, Ala [1 ]
Kilgallon, Paul [1 ]
Legrove, Nigel [1 ]
Simms, Nigel [1 ]
Oakey, John [1 ]
Bridgwater, Tony [2 ]
机构
[1] Cranfield Univ, Sch Appl Sci, Energy Technol Ctr, Cranfield MK43 0AL, Beds, England
[2] Aston Univ, Bioenergy Res Grp, Birmingham B4 7ET, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
biomass; bio-oil; combustion; emissions; ash deposition; corrosion; ENERGY-PRODUCTION; BIOMASS; FUELS; COAL;
D O I
10.1002/ep.10379
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fast pyrolysis is a promising method to transform. solid biomass into a liquid product called "bio-oil" with an energy density of four to five times greater than the feedstock. The process involves rapidly beating biomass to 450-600 degrees C in the absence of air and condensing the vapor produced to give bio-oil. Typically, 50-75% (weight) of the feedstock is converted into bio-oil that has a number of uses, for example energy production or bio-refinery feedstock. This study investigated the gaseous emissions and ash deposition characteristics resulting from bio-oil combustion in a pilot scale combustion test rig at Cranfield University. A feeding system with heated lines and beated/stirred reservoir was used to feed a spray nozzle in the combustion chamber. Ash deposit samples were collected from the resulting flue gas using three air-cooled probes that simulate beat exchanger tubes with surface temperatures of 500, 600, and 700 degrees C The deposits formed were analyzed using SEM/EDX and XRD techniques to assess the corrosion potential of the deposits. The results are compared to measured ash deposit compositions formed from biomass combustion. Thermodynamic modeling software was used to make predictions for the partitioning of a range of elements for bio-oil combustion and the results compared to the measured data. (C) 2009 American Institute of Chemical Engineers Environ Prog, 28: 397-403, 2009
引用
收藏
页码:397 / 403
页数:7
相关论文
共 50 条
  • [41] A pilot-scale investigation of ash and deposition formation during oil-palm empty-fruit-bunch (EFB) combustion
    Madhiyanon, T.
    Sathitruangsak, P.
    Sungworagarn, S.
    Pipatmanomai, S.
    Tia, S.
    FUEL PROCESSING TECHNOLOGY, 2012, 96 : 250 - 264
  • [42] Valorisation of bio-oil resulting from fast pyrolysis of wood
    Vanderauwera, Paul F. L. P.
    Wambeke, Dorine M. C.
    CHEMICAL PAPERS, 2014, 68 (09): : 1205 - 1212
  • [43] Accelerated Aging of Bio-oil from Fast Pyrolysis of Hardwood
    Alsbou, Eid
    Helleur, Bob
    ENERGY & FUELS, 2014, 28 (05) : 3224 - 3235
  • [44] Thermal Stability of Fractionated Bio-Oil from Fast Pyrolysis
    Hayerly, Martin R.
    Okoren, Kelley V.
    Brown, Robert C.
    ENERGY & FUELS, 2016, 30 (11) : 9419 - 9426
  • [45] Exergetic analysis of a fast pyrolysis process for bio-oil production
    Peters, Jens F.
    Petrakopoulou, Fontina
    Dufour, Javier
    FUEL PROCESSING TECHNOLOGY, 2014, 119 : 245 - 255
  • [46] Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass
    Zhang, SP
    Yan, YJ
    Ren, JW
    Li, TC
    ENERGY SOURCES, 2003, 25 (01): : 57 - 65
  • [47] Fast pyrolysis bio-oil as precursor of thermosetting epoxy resins
    Sibaja, Bernal
    Adhikari, Sushil
    Celikbag, Yusuf
    Via, Brian
    Auad, Maria L.
    POLYMER ENGINEERING AND SCIENCE, 2018, 58 (08): : 1296 - 1307
  • [48] CO2 Solubility in Fast Pyrolysis Bio-oil
    Baehr, Clarissa
    Acar, Ramazan
    Hamrita, Chaima
    Raffelt, Klaus
    Dahmen, Nicolaus
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (38) : 15378 - 15385
  • [49] Catalyst and process development for the hydroprocessing of fast pyrolysis bio-oil
    Olarte, Mariefel
    Wang, Huamin
    Santosa, Daniel
    Frye, John
    Meyer, Pimphan
    Lee, Suh-Jane
    Jones, Susanne
    Drennan, Corinne
    Choi, Jae
    Zacher, Alan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [50] Catalytic fast pyrolysis of rice husk for bio-oil production
    Cai, Wenfei
    Dai, Li
    Liu, Ronghou
    ENERGY, 2018, 154 : 477 - 487