Gene Extraction Based on Sparse Singular Value Decomposition

被引:0
|
作者
Kong, Xiangzhen [1 ]
Liu, Jinxing [1 ,2 ]
Zheng, Chunhou [1 ]
Shang, Junliang [1 ]
机构
[1] Qufu Normal Univ, Sch Informat Sci & Engn, Rizhao 276826, Shandong, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Guangdong, Peoples R China
关键词
Singular value decomposition; Gene extraction; Sparse constraint; Gene Ontology; COMPONENT ANALYSIS; EXPRESSION DATA; MATRIX; ENRICHMENT; LASSO; LIST; SET;
D O I
10.1007/978-3-319-42291-6_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we develop a new feature extraction method based on sparse singular value decomposition (SSVD). We apply SSVD algorithm to select the characteristic genes from Colorectal Cancer (CRC) genomic dataset, and then the differentially expressed genes obtained are evaluated by the tools based on Gene Ontology. As a gene extraction method, SSVD is also compared with some existing feature extraction methods such as independent component analysis (ICA), the p-norm robust feature extraction (PREE) and sparse principal component analysis (SPCA). The experimental results show that SSVD method outperforms the existing algorithms.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 50 条
  • [31] Watermark Based on Singular Value Decomposition
    Qazzaz, Ali Abdulazeez Mohammed Baqer
    Kadhim, Neamah Enad
    [J]. BAGHDAD SCIENCE JOURNAL, 2023, 20 (05) : 1797 - 1807
  • [32] Fault feature extraction method of rolling bearings based on singular value decomposition and local mean decomposition
    Wang, Jianguo
    Li, Jian
    Wan, Xudong
    [J]. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2015, 51 (03): : 104 - 110
  • [33] Electric shock feature extraction method based on adaptive variational mode decomposition and singular value decomposition
    Zhu, Hongzhang
    Wu, Chuanping
    Zhou, Yang
    Xie, Yao
    Zhou, Tiannian
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2023, 17 (09) : 361 - 372
  • [34] Sparse principal component regression via singular value decomposition approach
    Shuichi Kawano
    [J]. Advances in Data Analysis and Classification, 2021, 15 : 795 - 823
  • [35] Singular value decomposition versus sparse grids: refined complexity estimates
    Griebel, Michael
    Harbrecht, Helmut
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1652 - 1671
  • [36] Robust biclustering by sparse singular value decomposition incorporating stability selection
    Sill, Martin
    Kaiser, Sebastian
    Benner, Axel
    Kopp-Schneider, Annette
    [J]. BIOINFORMATICS, 2011, 27 (15) : 2089 - 2097
  • [37] A Sparse Singular Value Decomposition Method for High-Dimensional Data
    Yang, Dan
    Ma, Zongming
    Buja, Andreas
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 923 - 942
  • [38] ASSVD: Adaptive Sparse Singular Value Decomposition for High Dimensional Matrices
    Ding, Xiucai
    Chen, Xianyi
    Zou, Mengling
    Zhang, Guangxing
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (06): : 2634 - 2648
  • [39] Sparse principal component regression via singular value decomposition approach
    Kawano, Shuichi
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 795 - 823
  • [40] A Novel Gene Regulatory Network Construction Method based on Singular Value Decomposition
    An Baiyi
    Shen Wei
    [J]. PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2016, : 303 - 306