Hamilton-Jacobi theory over time scales and applications to linear-quadratic problems

被引:14
|
作者
Simon Hilscher, Roman [1 ]
Zeidan, Vera [2 ]
机构
[1] Masaryk Univ, Dept Math & Stat, Fac Sci, CZ-61137 Brno, Czech Republic
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi theory; Verification theorem; Bellman principle of optimality; Dynamic programming; Hamilton-Jacobi-Bellman equation; Nonlinear optimal control problem; Value function; Linear-quadratic regulator problem; Riccati equation; Feedback controller; Time scale symplectic system; Weak Pontryagin principle; EQUATIONS; SYSTEMS; PRINCIPLE; CALCULUS;
D O I
10.1016/j.na.2011.09.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first derive the verification theorem for nonlinear optimal control problems over time scales. That is, we show that the value function is the only solution of the Hamilton-Jacobi equation, in which the minimum is attained at an optimal feedback controller. Applications to the linear-quadratic regulator problem (LQR problem) gives a feedback optimal controller form in terms of the solution of a generalized time scale Riccati equation, and that every optimal solution of the LQR problem must take that form. A connection of the newly obtained Riccati equation with the traditional one is established. Problems with shift in the state variable are also considered. As an important tool for the latter theory we obtain a new formula for the chain rule on time scales. Finally, the corresponding LQR problem with shift in the state variable is analyzed and the results are related to previous ones. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:932 / 950
页数:19
相关论文
共 50 条
  • [41] Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control
    Rockafellar, RT
    Wolenski, PR
    [J]. PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2763 - 2767
  • [42] SINGULAR PERTURBATION PROBLEMS AND THE HAMILTON-JACOBI EQUATION
    KAMIN, S
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1986, 9 (01) : 95 - 105
  • [43] Hamilton-Jacobi treatment of Lagrangians with linear velocities
    Rabei, EM
    Nawafleh, KI
    Abdelrahman, YS
    Omari, HYR
    [J]. MODERN PHYSICS LETTERS A, 2003, 18 (23) : 1591 - 1596
  • [44] Perturbation problems in homogenization of Hamilton-Jacobi equations
    Cardaliaguet, Pierre
    Le Bris, Claude
    Souganidis, Panagiotis E.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 221 - 262
  • [45] Computation of nonclassical solutions to Hamilton-Jacobi problems
    Gremaud, PA
    Ide, NR
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 502 - 521
  • [46] Quantum version of Hamilton-Jacobi theory for time-dependent systems
    Sakoda, S
    Omote, M
    Kamefuchi, S
    [J]. GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 601 - 604
  • [47] Solutions to Estimation Problems for Scalar Hamilton-Jacobi Equations Using Linear Programming
    Claudel, Christian G.
    Chamoin, Timothee
    Bayen, Alexandre M.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (01) : 273 - 280
  • [48] Hamilton-Jacobi Reachability Safety Filter Applications
    不详
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 148 - 148
  • [49] The Hamilton-Jacobi theory for contact Hamiltonian systems
    De León, Manuel
    Lainz, Manuel
    Muñiz-Brea, Álvaro
    [J]. arXiv, 2021,
  • [50] On the Hamilton-Jacobi theory for singular lagrangian systems
    de Leon, Manuel
    Carlos Marrero, Juan
    Martin de Diego, David
    Vaquero, Miguel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)