Quantification of atomic force microscopy tip and sample thermal contact

被引:8
|
作者
Umatova, Zarina [1 ]
Zhang, Y. [2 ]
Rajkumar, Ravishkrishnan [2 ]
Dobson, Phillip S. [3 ]
Weaver, J. M. R. [3 ]
机构
[1] Nazarbayev Univ, 153 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
[2] Kelvin Nanotechnol, Oakfield Ave, Glasgow G12 8LT, Lanark, Scotland
[3] Univ Glasgow, Oakfield Ave, Glasgow G12 8LT, Lanark, Scotland
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2019年 / 90卷 / 09期
基金
英国工程与自然科学研究理事会;
关键词
CONDUCTIVITY;
D O I
10.1063/1.5097862
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A thermal conduction measurement device was fabricated, consisting of a silicon dioxide membrane with integrated thermal sensors (Pt resistance heater/thermometer and Pt-Au thermocouples) using MEMS technology. Heat transfer between the heated device and a number of unused atomic force microscope and scanning thermal microscope probes was measured. Changes in thermal conduction related to changes in the tip shape resulting from initial contact were observed. The sensors were fabricated by electron beam lithography and lift-off followed by local subtractive processing of a Pt-Au multilayer to form Pt heater-resistance thermometer elements and Pt-Au thermocouples. Thermal isolation from the silicon substrate was provided by dry release of the supporting 50 nm thick SiO2 membrane using an isotropic SF6 inductively coupled plasma etch. The high thermal isolation of the sample combined with the sensitivity of the temperature sensors used allowed the detection of thermal conduction between the tip and the sample with high precision. The measured temperature range of the Pt resistor was 293-643 K. The measured thermal resistance of the membrane was 3 x 10(5) K/W in air and 1.44 x 10(6) K/W in vacuum. The tip contact resistance was measured with a noise level of 0.3g(0) T at room temperature, where g(0) is the thermal resistance quantum.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Micromachined sample stages to reduce thermal drift in atomic force microscopy
    Sevim, Semih
    Tolunay, Selin
    Torun, Hamdi
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2015, 21 (07): : 1559 - 1566
  • [32] Micromachined sample stages to reduce thermal drift in atomic force microscopy
    Semih Sevim
    Selin Tolunay
    Hamdi Torun
    [J]. Microsystem Technologies, 2015, 21 : 1559 - 1566
  • [33] Reduction of tip-sample contact using dielectrophoretic force scanning probe microscopy
    Hilton, AM
    Lynch, BP
    Simpson, GJ
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (24) : 8008 - 8012
  • [34] ATOMIC FORCE MICROSCOPY A tip for diagnosing cancer
    Lekka, Malgorzata
    [J]. NATURE NANOTECHNOLOGY, 2012, 7 (11) : 691 - 692
  • [35] Tip Trajectory Mapping in Atomic Force Microscopy
    Sigdel, Krishna P.
    Grayer, Justin S.
    King, Gavin M.
    [J]. BIOPHYSICAL JOURNAL, 2013, 104 (02) : 512A - 512A
  • [36] Tip evaluation system for atomic force microscopy
    Heaton, M.G.
    Mosley, J.J.
    [J]. American Laboratory, 1998, 30 (19):
  • [37] TIP ARTIFACTS OF MICROFABRICATED FORCE SENSORS FOR ATOMIC FORCE MICROSCOPY
    GRUTTER, P
    ZIMMERMANNEDLING, W
    BRODBECK, D
    [J]. APPLIED PHYSICS LETTERS, 1992, 60 (22) : 2741 - 2743
  • [38] Effect of tip size on force measurement in atomic force microscopy
    Lim, Leonard T. W.
    Wee, Andrew T. S.
    O'Shea, Sean J.
    [J]. LANGMUIR, 2008, 24 (06) : 2271 - 2273
  • [39] Imaging contrast and tip-sample interaction of non-contact amplitude modulation atomic force microscopy with Q-control
    Shi, Shuai
    Guo, Dan
    Luo, Jianbin
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (41)
  • [40] Direct Tip-Sample Force Estimation for High-Speed Dynamic Mode Atomic Force Microscopy
    Karvinen, Kai S.
    Ruppert, Michael G.
    Mahata, Kaushik
    Moheimani, S. O. R.
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (06) : 1257 - 1265