Analyzing degradation data with a random effects spline regression model

被引:8
|
作者
Fugate, M. L. [1 ]
Hamada, M. S. [1 ]
Weaver, B. P. [1 ]
机构
[1] Los Alamos Natl Lab, Stat Sci Grp, Mail Stop F600, Los Alamos, NM 87545 USA
关键词
basis; Bayesian inference; natural cubic spline; prediction; reliability;
D O I
10.1080/08982112.2017.1307390
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.
引用
收藏
页码:358 / 365
页数:8
相关论文
共 50 条
  • [1] Analyzing accelerated degradation data via an inverse Gaussian degradation model with random parameters
    Teng, Fei
    Wang, Haowei
    [J]. 2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 1031 - 1036
  • [2] Analyzing accelerated degradation data by nonparametric regression
    Shiau, JJH
    Lin, HH
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 1999, 48 (02) : 149 - 158
  • [3] A regression spline model for developmental toxicity data
    Hunt, DL
    Li, CS
    [J]. TOXICOLOGICAL SCIENCES, 2006, 92 (01) : 329 - 334
  • [4] Random effects regression mixtures for analyzing infant habituation
    Young, Derek S.
    Hunter, David R.
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (07) : 1421 - 1441
  • [5] Nonparametric estimation of marginal effects in regression-spline random effects models
    Ma, Shujie
    Racine, Jeffrey S.
    Ullah, Aman
    [J]. ECONOMETRIC REVIEWS, 2020, 39 (08) : 792 - 825
  • [6] A random effects nonlinear regression model for analysis of environmental contamination data
    Otani, K
    Ohtaki, M
    Watanabe, S
    [J]. ENVIRONMETRICS, 2003, 14 (02) : 149 - 157
  • [7] Modeling random effects for censored data by a multivariate normal regression model
    Klein, JP
    Pelz, C
    Zhang, MJ
    [J]. BIOMETRICS, 1999, 55 (02) : 497 - 506
  • [8] Novel Methods for Analyzing Random Effects on ANOVA and Regression Techniques
    Bencsik, Gergely
    Bacsardi, Laszlo
    [J]. KNOWLEDGE, INFORMATION AND CREATIVITY SUPPORT SYSTEMS, 2016, 416 : 499 - 509
  • [9] Logistic regression model for analyzing extended haplotype data
    Wallenstein, S
    Hodge, SE
    Weston, A
    [J]. GENETIC EPIDEMIOLOGY, 1998, 15 (02) : 173 - 181
  • [10] A regression model for multivariate random length data
    Barnhart, HX
    Kosinski, AS
    Sampson, AR
    [J]. STATISTICS IN MEDICINE, 1999, 18 (02) : 199 - 211