A flamelet model for premixed methane-air flames

被引:7
|
作者
Abou-Ellail, MMM [1 ]
Beshay, KR
Mansour, MS
机构
[1] American Univ, Mech Engn Unit, Cairo, Egypt
[2] Cairo Univ, Dept Power Mech Engn, Giza, Egypt
关键词
D O I
10.1080/00102200008947262
中图分类号
O414.1 [热力学];
学科分类号
摘要
The structure of premixed methane-air flames is analyzed using the "laminar flamelet concept". A new model based on one-dimensional set of transformed coupled second order differential conservation equations describing the species concentrations of CO2, CO, O-2 CH4, H2O, H-2 and N-2 and the sensible enthalpy are presented in the present work. The equations are rigorously derived and solved numerically. In these equations, a reaction progress variable (c) is taken as the independent variable that varies from zero to one. A three-step chemical kinetic mechanism is adopted. This was deduced in a systematic way from a detailed chemical kinetic mechanism. The rates for the three steps are related to the rates of the elementary reactions of the full reaction mechanism. Calculations are made for different fixed values of the scalar dissipation rate (chi) until the flamelet eventually reaches the extinction limit at different levels of pressure. Moreover, simultaneous and instantaneous 1-D measurements of CO2, O-2, CO, N-2, CH4, H2O, H-2, OH and temperature have been carried out in a premixed laminar methane-air flame. A one-dimensional UV Raman-Rayleigh and Laser Induced Predissociation (LIPF) technique has been applied in the present work. The spatial and temporal resolutions are limited to the signal-to-noise ratio and the laser pulse duration. The results of the calculations are assessed against the measurements and previous predictions based on the asymptotic approach of Cl mechanism and a 4-step reduced mechanism. The burning velocity at different equivalence ratios was also deduced from the flamelet properties and assessed against available data.
引用
收藏
页码:223 / 245
页数:23
相关论文
共 50 条
  • [21] Estimations of local heat release rate in the methane-air premixed flames
    Choi, G. -M.
    Yang, J. -S.
    Kim, D. J.
    Tanahashi, M.
    Miyauchi, T.
    [J]. THERMOCHIMICA ACTA, 2007, 455 (1-2) : 34 - 39
  • [22] Effects of electrode configurations on the combustion characteristics of premixed methane-air flames
    Fang, Jianfeng
    Wu, Xiaomin
    Duan, Hao
    Li, Chao
    Gao, Zhongquan
    [J]. JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2015, 10 (01):
  • [23] Inhibition of Premixed Methane-Air Flames with CF3I
    Luo, Caimao
    Dlugogorski, Bogdan
    Kennedy, Eric
    Moghtaderi, Behdad
    [J]. CHEMICAL PRODUCT AND PROCESS MODELING, 2009, 4 (03):
  • [24] EXTINCTION OF PREMIXED METHANE-AIR FLAMES WITH REDUCED REACTION-MECHANISM
    BECHTOLD, JK
    LAW, CK
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 1994, 100 (1-6) : 371 - 378
  • [25] THE ASYMPTOTIC STRUCTURE OF PREMIXED METHANE-AIR FLAMES WITH SLOW CO OXIDATION
    BULPHAM, M
    SESHADRI, K
    WILLIAMS, FA
    [J]. COMBUSTION AND FLAME, 1992, 89 (3-4) : 343 - 362
  • [26] BURNING RATE OF PREMIXED METHANE-AIR FLAMES INHIBITED BY FLUORINATED HYDROCARBONS
    LINTERIS, GT
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 247 - ENVR
  • [27] AERODYNAMIC QUENCHING AND BURNING VELOCITY OF TURBULENT PREMIXED METHANE-AIR FLAMES
    Nivarti, Girish V.
    Cant, R. Stewart
    [J]. ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 4B, 2015,
  • [28] Numerical evaluation of NOx mechanisms in methane-air counterflow premixed flames
    Cho, Eun-Seong
    Chung, Suk Ho
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (03) : 659 - 666
  • [29] Combustion inhibition and enhancement of premixed methane-air flames by halon replacements
    Pagliaro, John L.
    Linteris, Gregory T.
    Sunderland, Peter B.
    Baker, Patrick T.
    [J]. COMBUSTION AND FLAME, 2015, 162 (01) : 41 - 49
  • [30] Radiation extinction limit of counterflow premixed lean methane-air flames
    Guo, HS
    Ju, YG
    Maruta, K
    Niioka, T
    Liu, FS
    [J]. COMBUSTION AND FLAME, 1997, 109 (04) : 639 - 646