Cognitive Workload in Conventional Direct Control vs. Pattern Recognition Control of an Upper-limb Prosthesis

被引:0
|
作者
Zhang, Wenjuan [1 ]
White, Melissa [1 ]
Zahabi, Maryam [1 ]
Winslow, Anna T. [2 ,3 ]
Zhang, Fan [2 ,3 ]
Huang, He [2 ,3 ]
Kaber, David [1 ]
机构
[1] North Carolina State Univ, Ind & Syst Engn, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Raleigh, NC USA
[3] Univ North Carolina Chapel Hill, Biomed Engn, Chapel Hill, NC USA
基金
美国国家科学基金会;
关键词
PUPIL SIZE;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this study was to compare the cognitive workload of able-bodied individuals when using a myoelectric prosthetic under direct control (DC) or electromyography pattern recognition (PR) control. Different from existing clinical evaluations involving dual task performance, pupillography measured with an eye tracking system was used to quantitatively assess user cognitive workload in using a 2 degree-of-freedom prosthesis for a clothespin task. Test results revealed the PR control to produce superior task performance and to require lower cognitive load than demanded of participants under the DC condition. This study provided evidence of both performance and workload advantages of PR control over DC control. PR control was more intuitive to the prosthesis user and, therefore, required less cognitive effort. Furthermore, the study identified a new effective measure of cognitive workload in upper limb prosthesis use via pupillography.
引用
收藏
页码:2335 / 2340
页数:6
相关论文
共 50 条
  • [31] A Novel Respiratory Control and Actuation System for Upper-Limb Prosthesis Users: Clinical Evaluation Study
    Nagaraja, Vikranth H.
    Moulic, Soikat Ghosh
    D'souza, Jennifer V.
    Limesh, M.
    Walters, Peter
    Bergmann, Jeroen H. M.
    [J]. IEEE ACCESS, 2022, 10 : 128764 - 128778
  • [32] A biomechatronics-based EPP topology for upper-limb prosthesis control: Modeling & benchtop prototype
    Mablekos-Alexiou, Anestis
    Kontogiannopoulos, Spiros
    Bertos, Georgios A.
    Papadopoulos, Evangelos
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
  • [33] Intelligent EMG Pattern Recognition Control Method for Upper-Limb Multifunctional Prostheses: Advances, Current Challenges, and Future Prospects
    Samuel, Oluwarotimi Williams
    Asogbon, Mojisola Grace
    Geng, Yanjuan
    Al-Timemy, Ali H.
    Pirbhulal, Sandeep
    Ji, Ning
    Chen, Shixiong
    Fang, Peng
    Li, Guanglin
    [J]. IEEE ACCESS, 2019, 7 : 10150 - 10165
  • [34] Control of Upper-Limb Power-Assist Exoskeleton Based on Motion Intention Recognition
    Huo, Weiguang
    Huang, Jian
    Wang, Yongji
    Wu, Jun
    Cheng, Lei
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 2243 - 2248
  • [35] Sensor Reduction, Estimation, and Control of an Upper-Limb Exoskeleton
    Sun, Jianwei
    Shen, Yang
    Rosen, Jacob
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 1012 - 1019
  • [36] Users' and therapists' perceptions of myoelectric multi-function upper limb prostheses with conventional and pattern recognition control
    Franzke, Andreas W.
    Kristoffersen, Morten B.
    Bongers, Raoul M.
    Murgia, Alessio
    Pobatschnig, Barbara
    Unglaube, Fabian
    van der Sluis, Corry K.
    [J]. PLOS ONE, 2019, 14 (08):
  • [37] The Impact of Visual Feedback on the Motor Control of the Upper-Limb
    Urra, O.
    Casals, A.
    Jane, R.
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 3945 - 3948
  • [38] AUGMENTED AUDITORY INFORMATION IN THE CONTROL OF UPPER-LIMB PROSTHESES
    PATTERSON, P
    SHEA, CH
    [J]. ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 1985, 66 (04): : 243 - 245
  • [39] Control investigation of a customizable/adjustable exoskeleton upper-limb
    Stopforth, Riaan
    [J]. INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2013, 40 (02): : 132 - 142
  • [40] Control System Design for an Upper-Limb Rehabilitation Robot
    Xu, Guozheng
    Song, Aiguo
    Li, Huijun
    [J]. ADVANCED ROBOTICS, 2011, 25 (1-2) : 229 - 251