Intelligent Modeling and Control of a Conveyor Belt Grain Dryer Using a Simplified Type 2 Neuro-Fuzzy Controller

被引:25
|
作者
Lutfy, Omar F. [1 ]
Selamat, Hazlina [2 ]
Noor, S. B. Mohd [3 ]
机构
[1] Univ Technol Baghdad, Control & Syst Engn Dept, Baghdad 18310, Iraq
[2] Univ Teknol Malaysia, Ctr Artificial Intelligence & Robot, Kuala Lumpur, Malaysia
[3] Univ Putra Malaysia, Dept Elect & Elect Engn, Serdang, Malaysia
关键词
Conveyor belt grain dryer; Genetic algorithm; System identification; Type 2 neuro-fuzzy controller; LEAVES ILEX-PARAGUARIENSIS; RESEARCH-AND-DEVELOPMENT; DEEP-BED; NONLINEAR IDENTIFICATION; MOVING-BED; NETWORK; QUALITY; PADDY; SIMULATION; ENERGY;
D O I
10.1080/07373937.2015.1021007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this article, a nonlinear autoregressive with exogenous input (NARX) network was utilized to model a conveyor belt grain dryer using a set of input-output data collected during an experiment to dry paddy grains. The resulting NARX model has achieved a remarkable modeling accuracy compared to other previously reported modeling techniques. To control the considered dryer, a simplified type 2 adaptive neuro-fuzzy inference system (ANFIS) controller was proposed. The effectiveness of this controller was demonstrated by several performance tests conducted by computer simulations. Moreover, a comparative study with other related controllers further confirmed the superiority of the proposed dryer controller.
引用
收藏
页码:1210 / 1222
页数:13
相关论文
共 50 条
  • [1] Neuro-fuzzy modeling of a conveyor-belt grain dryer
    Lutfy, O. F.
    Noor, S. B. Mohd
    Marhaban, M. H.
    Abbas, K. A.
    Mansor, H.
    [J]. JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2010, 8 (3-4): : 128 - 134
  • [2] Non-linear modelling and control of a conveyor-belt grain dryer utilizing neuro-fuzzy systems
    Lutfy, O. F.
    Noor, S. B. Mohd
    Marhaban, M. H.
    Abbas, K. A.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2011, 225 (I5) : 611 - 622
  • [3] Control of Inverted Pendulum System Using a Neuro-Fuzzy Controller for Intelligent Control Education
    Lee, Geun Hyeong
    Jung, Seul
    [J]. 2008 INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION: (ICMA), VOLS 1 AND 2, 2008, : 964 - 969
  • [4] Modelling and control of laboratory scale conveyor belt type grain dryer plant
    Mansor, H.
    Khan, S.
    Gunawan, T. S.
    [J]. JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2012, 10 (02): : 1384 - 1388
  • [5] Modeling and design of an automatic generation control for hydropower plants using Neuro-Fuzzy controller
    Weldcherkos, Tilahun
    Salau, Ayodeji Olalekan
    Ashagrie, Aderajew
    [J]. ENERGY REPORTS, 2021, 7 : 6626 - 6637
  • [6] Improving Control of SST using Type-2 Neuro-Fuzzy Controller with Elliptic Membership Function
    Acikgoz, Hakan
    Sekkeli, Mustafa
    [J]. 2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP 2019), 2019,
  • [7] SERVOHYDRAULIC CYLINDER POSITION CONTROL USING A NEURO-FUZZY CONTROLLER
    SHIH, MC
    TSAI, CP
    [J]. MECHATRONICS, 1995, 5 (05) : 497 - 512
  • [8] Adaptive speed control of drive system with 2-type neuro-fuzzy controller
    Knychas, Sebastian
    Szabat, Krzysztof
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (04): : 160 - 163
  • [9] Intelligent modeling and control of washing machine using locally linear neuro-fuzzy (LLNF) modeling and modified brain emotional learning based intelligent controller (BELBIC)
    Lucas, Caro
    Milasi, Rasoul M.
    Araabi, Babak N.
    [J]. ASIAN JOURNAL OF CONTROL, 2006, 8 (04) : 393 - 400
  • [10] Intelligent speed adaptation using a self-organizing neuro-fuzzy controller
    Partouche, David
    Pasquier, Michel
    Spalanzani, Anne
    [J]. 2007 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2007, : 668 - +