Mixed-Integer MultiParametric Approach based on Machine Learning Techniques

被引:6
|
作者
Shokry, Ahmed [1 ,2 ]
Medina-Gonzalez, Sergio [1 ]
Espuna, Antonio [1 ]
机构
[1] Univ Politecn Cataluna, Dept Chem Engn, EEBE, Av Eduard Maristany 10-14,Edifici 1,Planta 6, Barcelona 08019, Spain
[2] Zagazig Univ, Fac Engn, Dept Mech Design & Prod Engn, Zagazig, Egypt
关键词
Optimization under uncertainty; Metamodels; Classification; Clustering;
D O I
10.1016/B978-0-444-63965-3.50077-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper investigates the extension of a MultiParametric approach based on surrogate models (Meta-MultiParametric approach, M-MP) in order to handle general Mixed Integer (MI) optimization problems involving Uncertain Parameters (UPs). The method harnesses metamodeling and clustering techniques in order to approximate black box relations between the optimal values of the continuous variables and the UPs, while Classification Techniques (CT) are employed to identify the optimal values of the integer variables also as a function of the UPs, The results of applying the method to a benchmark case-study show a high prediction accuracy of the optimal solutions, saving computational effort and overpassing the complex mathematical procedures required by the standard Multi Parametric Programming methods,
引用
收藏
页码:451 / 456
页数:6
相关论文
共 50 条
  • [41] Learning to select cuts for efficient mixed-integer programming
    Huang, Zeren
    Wang, Kerong
    Liu, Furui
    Zhen, Hui-Ling
    Zhang, Weinan
    Yuan, Mingxuan
    Hao, Jianye
    Yu, Yong
    Wang, Jun
    Pattern Recognition, 2022, 123
  • [42] Learning to optimize: A tutorial for continuous and mixed-integer optimization
    Chen, Xiaohan
    Liu, Jialin
    Yin, Wotao
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (06) : 1191 - 1262
  • [43] Learning to optimize: A tutorial for continuous and mixed-integer optimization
    Xiaohan Chen
    Jialin Liu
    Wotao Yin
    Science China Mathematics, 2024, 67 (06) : 1191 - 1262
  • [44] Learning a Classification of Mixed-Integer Quadratic Programming Problems
    Bonami, Pierre
    Lodi, Andrea
    Zarpellon, Giulia
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2018, 2018, 10848 : 595 - 604
  • [45] A mixed-integer mathematical modeling approach to exam timetabling
    Al-Yakoob S.M.
    Sherali H.D.
    Al-Jazzaf M.
    Computational Management Science, 2010, 7 (1) : 19 - 46
  • [46] A DC Programming Approach for Mixed-Integer Linear Programs
    Niu, Yi-Shuai
    Dinh, Tao Pham
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES, PROCEEDINGS, 2008, 14 : 244 - 253
  • [47] A mixed-integer optimization approach for homogeneous magnet design
    Dayarian, Iman
    Chan, Timothy C. Y.
    Jaffray, David
    Stanescu, Teo
    TECHNOLOGY, 2018, 6 (02): : 49 - 58
  • [48] Designing Networks: A Mixed-Integer Linear Optimization Approach
    Gounaris, Chrysanthos E.
    Rajendran, Karthikeyan
    Kevrekidis, Ioannis G.
    Floudas, Christodoulos A.
    NETWORKS, 2016, 68 (04) : 283 - 301
  • [49] A feasible rounding approach for mixed-integer optimization problems
    Christoph Neumann
    Oliver Stein
    Nathan Sudermann-Merx
    Computational Optimization and Applications, 2019, 72 : 309 - 337
  • [50] A Mixed-Integer Programming Approach for the Design of Homogeneous Magnets
    Chan, T.
    Dayarian, I.
    Jaffray, D.
    Stanescu, T.
    MEDICAL PHYSICS, 2017, 44 (06) : 3156 - 3156