On distinguished local coordinates for locally homogeneous affine surfaces

被引:0
|
作者
Brozos-Vazquez, M. [1 ]
Garcia-Rio, E. [2 ]
Gilkey, P. [3 ]
机构
[1] Univ A Coruna, Differential Geometry & Its Applicat Res Grp, Escola Politecn Super, Ferrol 15403, Spain
[2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 192卷 / 01期
关键词
Affine surface; Locally homogeneous; Local forms; Affine Killing equations; SYMMETRIC RICCI TENSOR; CONNECTIONS; CLASSIFICATION; MANIFOLDS;
D O I
10.1007/s00605-020-01382-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new short self-contained proof of the result of Opozda (Differ Geom Appl 21:173-198, 2004) classifying the locally homogeneous torsion free affine surfaces and the extension to the case of surfaces with torsion due to Arias-Marco and Kowalski (Monatsh Math 153:1-18, 2008). Our approach rests on a direct analysis of the affine Killing equations and is quite different than the approaches taken previously in the literature.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
  • [41] Homogeneous locally nilpotent derivations having slices and embeddings of affine spaces
    Masuda, Kayo
    JOURNAL OF ALGEBRA, 2009, 321 (06) : 1719 - 1733
  • [42] Locally Homogeneous Manifolds Defined by Lie Algebra of Infinitesimal Affine Transformations
    Popov, Vladimir A.
    MATHEMATICS, 2022, 10 (24)
  • [43] On quasi-umbilical locally strongly convex homogeneous affine hypersurfaces
    Hu, Zejun
    Li, Cece
    Zhang, Chuanjing
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 33 : 46 - 74
  • [44] Four-dimensional locally strongly convex homogeneous affine hypersurfaces
    Chikh Salah A.
    Vrancken L.
    Journal of Geometry, 2017, 108 (1) : 119 - 147
  • [45] Solutions to the affine quasi-Einstein equation for homogeneous surfaces
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gilkey, P.
    Valle-Regueiro, X.
    ADVANCES IN GEOMETRY, 2020, 20 (03) : 413 - 432
  • [46] FUNDAMENTAL GROUPS OF COMPACT COMPLETE LOCALLY AFFINE COMPLEX SURFACES
    FILLMORE, JP
    SCHEUNEM.J
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 44 (02) : 487 - 496
  • [47] Hermitian curvature flow on complex locally homogeneous surfaces
    Francesco Pediconi
    Mattia Pujia
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 815 - 844
  • [48] Hermitian curvature flow on complex locally homogeneous surfaces
    Pediconi, Francesco
    Pujia, Mattia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 815 - 844
  • [49] LOCAL NORMAL FORMS OF EM-WAVEFRONTS IN AFFINE FLAT COORDINATES
    NAKAJIMA, N. A. O. M. I. C. H. I.
    KODAI MATHEMATICAL JOURNAL, 2022, 45 (03) : 388 - 403
  • [50] AFFINE COORDINATES AND FINITENESS
    Giol, Julien
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1185 - 1196