Mining frequent patterns in an arbitrary sliding window over data streams

被引:0
|
作者
Li, Guohui [1 ]
Chen, Hui [1 ]
Yang, Bing [1 ]
Chen, Gang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a method for mining the frequent patterns in an arbitrary sliding window of data streams. As streams flow, the contents of which are captured with SWP-tree by scanning the stream only once, and the obsolete and infrequent patterns are deleted by periodically pruning the tree. To differentiate the patterns of recently generated transactions from those of historic transactions, a time decaying model is also applied. The experimental results show that the proposed method is efficient and scalable, and it is superior to other analogous algorithms.
引用
收藏
页码:496 / 503
页数:8
相关论文
共 50 条
  • [41] Bloom Filter Based Frequent Patterns Mining over Data Streams
    Tan JunShan
    Kuang Zhufang
    Yang Guogui
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768
  • [42] Efficient approximate mining of frequent patterns over transactional data streams
    Ng, Willie
    Dash, Manoranjan
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2008, 5182 : 241 - 250
  • [43] An Efficient Approach for Mining Frequent Patterns over Uncertain Data Streams
    Shajib, Md. Badi-Uz-Zaman
    Samiullah, Md.
    Ahmed, Chowdhury Farhan
    Leung, Carson K.
    Pazdor, Adam G. M.
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 980 - 984
  • [44] Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model
    Farzanyar, Zahra
    Kangavari, Mohammadreza
    Cercone, Nick
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) : 1706 - 1718
  • [45] An efficient algorithm for mining maximal frequent patterns over data streams
    Yang, Junrui
    Wei, Yanjun
    Zhou, Fenfen
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II, 2015,
  • [46] A Change Detector for Mining Frequent Patterns over Evolving Data Streams
    Ng, Willie
    Dash, Manoranjan
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2406 - +
  • [47] Mining Discriminative Itemsets Over Data Streams Using Efficient Sliding Window
    Seyfi M.
    Nayak R.
    Xu Y.
    SN Computer Science, 4 (5)
  • [48] High utility pattern mining over data streams with sliding window technique
    Ryang, Heungmo
    Yun, Unil
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 57 : 214 - 231
  • [49] A sliding window method for finding recently frequent itemsets over Online data streams
    Chang, JH
    Lee, WS
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2004, 20 (04) : 753 - 762
  • [50] Mining evolving data streams for frequent patterns
    Laur, Pierre-Alain
    Nock, Richard
    Symphor, Jean-Emile
    Poncelet, Pascal
    PATTERN RECOGNITION, 2007, 40 (02) : 492 - 503