Smoothing Fields of Frames Using Conjugate Norms on Reproducing Kernel Hilbert Spaces

被引:0
|
作者
Chou, Hsiao-Fang [1 ]
Younes, Laurent [1 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
来源
COMPUTATIONAL IMAGING VII | 2009年 / 7246卷
关键词
Diffusion Tensor Imaging; Image denoising; Reproducing Kernel Hilbert Space; APPARENT DIFFUSION-COEFFICIENT; BRAIN; VIVO;
D O I
10.1117/12.815280
中图分类号
TH742 [显微镜];
学科分类号
摘要
Diffusion tensor imaging provides structural information in medical images in the form of a symmetric positive matrix that provides, at each point, the covariance of water diffusion in the tissue. We here describe a new approach designed for smoothing this tensor by directly acting on the field of frames provided by the eigenvectors of this matrix. Using a representation of fields of frames as linear forms acting on smooth tensor fields, we use the theory of reproducing kernel Hilbert spaces to design a measure of smoothness based on kernels which is then used in a denoising algorithm. We illustrate this with brain images and show the impact of the procedure on the output of fiber tracking in white matter.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Frames, their relatives and reproducing kernel Hilbert spaces
    Speckbacher, Michael
    Balazs, Peter
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (01)
  • [2] Adaptive estimation of external fields in reproducing kernel Hilbert spaces
    Guo, Jia
    Kepler, Michael E.
    Tej Paruchuri, Sai
    Wang, Hoaran
    Kurdila, Andrew J.
    Stilwell, Daniel J.
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (08) : 1931 - 1957
  • [3] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    [J]. NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [4] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126
  • [5] On isomorphism of reproducing kernel Hilbert spaces
    V. V. Napalkov
    V. V. Napalkov
    [J]. Doklady Mathematics, 2017, 95 : 270 - 272
  • [6] Noncommutative reproducing kernel Hilbert spaces
    Ball, Joseph A.
    Marx, Gregory
    Vinnikov, Victor
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (07) : 1844 - 1920
  • [7] RELATIVE REPRODUCING KERNEL HILBERT SPACES
    Alpay, Daniel
    Jorgensen, Palle
    Volok, Dan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) : 3889 - 3895
  • [8] On reproducing kernel Hilbert spaces of polynomials
    Li, XJ
    [J]. MATHEMATISCHE NACHRICHTEN, 1997, 185 : 115 - 148
  • [9] On isomorphism of reproducing kernel Hilbert spaces
    Napalkov, V. V.
    Napalkov, V. V., Jr.
    [J]. DOKLADY MATHEMATICS, 2017, 95 (03) : 270 - 272
  • [10] Interpolation of monogenic functions by using reproducing kernel Hilbert spaces
    Cerejeiras, Paula
    Kaehler, Uwe
    Legatiuk, Dmitrii
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 8100 - 8114