Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data

被引:46
|
作者
Nguyen Huy Tuan [1 ]
Baleanu, Dumitru [2 ,3 ,4 ]
Tran Ngoc Thach [5 ,6 ]
O'Regan, Donal [7 ]
Nguyen Huu Can [8 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Cankaya Univ, Dept Math, Ankara, Turkey
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] Inst Space Sci, Magurele, Romania
[5] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[6] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[7] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[8] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
Backward problem; Fractional reaction-diffusion equation; Regularization method; Nonlinear source; Discrete data; APPROXIMATE SOLUTION; INVERSE PROBLEM; BACKWARD;
D O I
10.1016/j.cam.2020.112883
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the problem of finding the solution of a multi-dimensional time fractional reaction-diffusion equation with nonlinear source from the final value data. We prove that the present problem is not well-posed. Then regularized problems are constructed using the truncated expansion method (in the case of two-dimensional) and the quasi-boundary value method (in the case of multi-dimensional). Finally, convergence rates of the regularized solutions are given and investigated numerically. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] On a final value problem for fractional reaction-diffusion equation with Riemann-Liouville fractional derivative
    Ngoc Tran
    Vo Van Au
    Zhou, Yong
    Nguyen Huy Tuan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3086 - 3098
  • [2] Numerical approximations for the nonlinear time fractional reaction-diffusion equation
    Liu, Haiyu
    Lu, Shujuan
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1355 - 1375
  • [3] Regularization of the Final Value Problem for the Time-Fractional Diffusion Equation
    Mohammad F. Al-Jamal
    Kamal Barghout
    Nidal Abu-Libdeh
    [J]. Iranian Journal of Science, 2023, 47 : 931 - 941
  • [4] Regularization of the Final Value Problem for the Time-Fractional Diffusion Equation
    Al-Jamal, Mohammad F.
    Barghout, Kamal
    Abu-Libdeh, Nidal
    [J]. IRANIAN JOURNAL OF SCIENCE, 2023, 47 (03) : 931 - 941
  • [5] The Decay of mass for a nonlinear fractional reaction-diffusion equation
    Jleli, Mohamed
    Samet, Bessem
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (07) : 1369 - 1378
  • [6] An approximate solution of nonlinear fractional reaction-diffusion equation
    Das, S.
    Gupta, P. K.
    Ghosh, P.
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 4071 - 4076
  • [7] Regularity theory for a nonlinear fractional reaction-diffusion equation
    de Andrade, Bruno
    Cruz, Thamires Santos
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [8] On a final value problem for the time-fractional diffusion equation with inhomogeneous source
    Nguyen Huy Tuan
    Le Dinh Long
    Van Thinh Nguyen
    Thanh Tran
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (09) : 1367 - 1395
  • [9] On an inverse potential problem for a fractional reaction-diffusion equation
    Kaltenbacher, Barbara
    Rundell, William
    [J]. INVERSE PROBLEMS, 2019, 35 (06)
  • [10] Exponentially fitted methods for solving time fractional nonlinear reaction-diffusion equation
    Zahra, W. K.
    Nasr, M. A.
    Van Daele, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 468 - 490