Estimation of thermodynamic parameters of the biosphere, based on remote sensing

被引:15
|
作者
Puzachenko, Y. G. [1 ]
Sandlersky, R. B. [1 ]
Svirejeva-Hopkins, A. [2 ]
机构
[1] AN Severtsov Inst Ecol & Evolut IPEE RAS, Moscow, Russia
[2] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany
关键词
Biosphere; Entropy; Information; Principle of maximum entropy; Exergy; IMAGING SPECTROSCOPY; SURFACE-TEMPERATURE; VEGETATION INDEXES; ENTROPY PRODUCTION; CANOPY; IRRADIANCE; PLANT;
D O I
10.1016/j.ecolmodel.2011.05.011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A method that allows the estimation of the thermodynamic parameters of the biosphere has been developed. It results in the subdivision of the following four phase states of the biosphere: three equilibrium states: "white planet" with high albedo and low entropy; temperate forest in winter with high entropy; and desert with high entropy; and one nonequilibrium state: the "active forests" with low entropy, high information gain and the highest exergy values. The phase shift to a nonequilibrium state happens when albedo is less than 0.2. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2913 / 2923
页数:11
相关论文
共 50 条
  • [31] Estimation of Photosynthetic Parameters of Cinnamomum camphora in Dwarf Forest Based on UAV Multi-spectral Remote Sensing
    Lu, Xianghui
    Gong, Rongxin
    Zhang, Haina
    Wang, Qian
    Zhang, Jie
    Xie, Rongxiu
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (10): : 179 - 187
  • [32] Estimation of Maize FPAR Based on UAV Multispectral Remote Sensing
    Wang, Laigang
    He, Jia
    Zheng, Guoqing
    Guo, Yan
    Zhang, Yan
    Zhang, Hongli
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (10): : 202 - 210
  • [33] Estimation of river discharge based on remote sensing of a river plume
    Osadchiev, A.
    [J]. REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2015, 2015, 9638
  • [34] Reservoir storage curve estimation based on remote sensing data
    Peng, DZ
    Guo, SL
    Liu, P
    Liu, T
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2006, 11 (02) : 165 - 172
  • [35] Remote sensing image fusion based on Bayesian linear estimation
    GE ZhiRong1
    2 Key Laboratory of Wave Scattering and Remote Sensing Information (Ministry of Education)
    [J]. Science China(Information Sciences), 2007, (02) : 227 - 240
  • [36] ESTIMATION OF EVAPOTRANSPIRATION BASED ON REMOTE SENSING IN HEIHE RIVER BASIN
    Yang, Yongmin
    Su, Hongbo
    Zhang, Renhua
    Rong, Yuan
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3273 - 3276
  • [37] Remote sensing image fusion based on Bayesian linear estimation
    ZhiRong Ge
    Bin Wang
    LiMing Zhang
    [J]. Science in China Series F: Information Sciences, 2007, 50 : 227 - 240
  • [38] REMOTE SENSING BASED CROP GROWTH STAGE ESTIMATION MODEL
    Di, Liping
    Yu, Eugene Genong
    Yang, Zhengwei
    Shrestha, Ranjay
    Kang, Lingjun
    Zhang, Bei
    Han, Weiguo
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2739 - 2742
  • [39] Atmospheric Light Estimation Based Remote Sensing Image Dehazing
    Zhu, Zhiqin
    Luo, Yaqin
    Wei, Hongyan
    Li, Yong
    Qi, Guanqiu
    Mazur, Neal
    Li, Yuanyuan
    Li, Penglong
    [J]. REMOTE SENSING, 2021, 13 (13)
  • [40] Remote Sensing and Controlling of Greenhouse Agriculture Parameters based on IoT
    Pallavi, S.
    Mallapur, Jayashree D.
    Bendigeri, Kirankumar Y.
    [J]. 2017 INTERNATIONAL CONFERENCE ON BIG DATA, IOT AND DATA SCIENCE (BID), 2017, : 44 - 48