Optimization of process parameters in the abrasive waterjet machining using integrated SA-GA

被引:58
|
作者
Zain, Azlan Mohd [1 ]
Haron, Habibollah [1 ]
Sharif, Safian [2 ]
机构
[1] Univ Teknol Malaysia, Fac Comp Sci & Informat Syst, Soft Comp Res Grp, Utm Skudai 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Fac Mech Engn, Dept Mfg & Ind Engn, Utm Skudai 81310, Johor, Malaysia
关键词
Optimization; Optimal process parameters; Minimum machining performance; MINIMIZING SURFACE-ROUGHNESS; CUTTING CONDITIONS; GENETIC ALGORITHM; NEURAL-NETWORK; PREDICTION; SELECTION; METHODOLOGY; MODEL;
D O I
10.1016/j.asoc.2011.05.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, Simulated Annealing (SA) and Genetic Algorithm (GA) soft computing techniques are integrated to estimate optimal process parameters that lead to a minimum value of machining performance. Two integration systems are proposed, labeled as integrated SA-GA-type1 and integrated SA-GA-type2. The approaches proposed in this study involve six modules, which are experimental data, regression modeling, SA optimization, GA optimization, integrated SA-GA-type1 optimization, and integrated SA-GA-type2 optimization. The objectives of the proposed integrated SA-GA-type1 and integrated SA-GA-type2 are to estimate the minimum value of the machining performance compared to the machining performance value of the experimental data and regression modeling, to estimate the optimal process parameters values that has to be within the range of the minimum and maximum process parameter values of experimental design, and to estimate the optimal solution of process parameters with a small number of iteration compared to the optimal solution of process parameters with SA and GA optimization. The process parameters and machining performance considered in this work deal with the real experimental data in the abrasive waterjet machining (AWJ) process. The results of this study showed that both of the proposed integration systems managed to estimate the optimal process parameters, leading to the minimum value of machining performance when compared to the result of real experimental data. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:5350 / 5359
页数:10
相关论文
共 50 条
  • [31] Sensor-based process control of abrasive waterjet machining: a review
    Thakur P.M.
    Raut D.N.
    [J]. International Journal of Machining and Machinability of Materials, 2024, 25 (3-4) : 266 - 292
  • [32] Optimization of abrasive water jet machining process parameters of Al 7071 using design of experiments
    Gowthama, K.
    Somashekar, H. M.
    Suresha, B.
    Rajole, Sangamesh
    Ravindran, N.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 52 : 2102 - 2108
  • [33] A process prediction model based on Cuckoo algorithm for abrasive waterjet machining
    Azizah Mohamad
    Azlan Mohd Zain
    Nor Erne Nazira Bazin
    Amirmudin Udin
    [J]. Journal of Intelligent Manufacturing, 2015, 26 : 1247 - 1252
  • [34] Prediction of surface roughness of titanium alloy in abrasive waterjet machining process
    Ting, Ho Yi
    Asmelash, Mebrahitom
    Azhari, Azmir
    Alemu, Tamiru
    Saptaji, Kushendarsyah
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2022, 16 (01): : 281 - 289
  • [35] A process prediction model based on Cuckoo algorithm for abrasive waterjet machining
    Mohamad, Azizah
    Zain, Azlan Mohd
    Bazin, Nor Erne Nazira
    Udin, Amirmudin
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2015, 26 (06) : 1247 - 1252
  • [36] Optimization of Process Parameters in Abrasive Water Jet Machining of Inconel 718 Using VIKOR Method
    Samson R.M.
    Rajak S.
    Kannan T.D.B.
    Sampreet K.R.
    [J]. Journal of The Institution of Engineers (India): Series C, 2020, 101 (03): : 579 - 585
  • [37] Optimization of Process Parameters of Abrasive Water Jet Machining Using Variations of Cohort Intelligence (CI)
    Gulia, Vikas
    Nargundkar, Aniket
    [J]. APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, VOL 2, 2019, 697 : 467 - 474
  • [38] Correction to: Optimization of abrasive waterjet machining using multi-objective cuckoo search algorithm
    Zhengrong Qiang
    Xiaojin Miao
    Meiping Wu
    Rapinder Sawhney
    [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105 : 2747 - 2747
  • [39] The Prediction and Optimization of the Effects of Abrasive Waterjet Cutting Parameters On Kerf
    Ay, M.
    Ay, I.
    [J]. ACTA PHYSICA POLONICA A, 2016, 129 (04) : 762 - 766
  • [40] Analysis and Optimization of Process Parameters in Abrasive Waterjet Contour Cutting of AISI 304L
    Llanto, Jennifer Milaor
    Vafadar, Ana
    Aamir, Muhammad
    Tolouei-Rad, Majid
    [J]. METALS, 2021, 11 (09)