A NOTE ON CONVOLUTION-TYPE CALDERON-ZYGMUND OPERATORS

被引:2
|
作者
Yang Zhanying [1 ,2 ]
Yang Qixiang [1 ]
机构
[1] Wuhan Univ, Coll Math & Stat, Wuhan 430072, Peoples R China
[2] S Cent Univ Nationalities, Coll Comp Sci, Wuhan 430074, Peoples R China
关键词
convolution-type Calderon-Zygmund operators; Triebel-Lizorkin spaces; wavelets; atomic decomposition;
D O I
10.1016/S0252-9602(09)60107-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For convolution-type Calderon-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that Hormander condition can ensure the boundedness on Triebel-Lizorkin spaces (F) over dot(p)(0,q) (1 < p, q < infinity) and on a party of endpoint spaces (F) over dot(1)(0,q) (1 <= q <= 2), but this idea is invalid for endpoint M-iebel-Lizorkin spaces (F) over dot(1)(0,q) (2 < q <= infinity). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on (F) over dot(1)(0,q) (2 < q <= infinity) under an integrable condition which approaches Hormander condition infinitely.
引用
收藏
页码:1341 / 1350
页数:10
相关论文
共 50 条