Birth-death processes with killing

被引:25
|
作者
van Doorn, EA
Zeifman, AI
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[2] CEMI RAS, Vologda Sci Coordinate Ctr, Vologda, Russia
[3] Vologda State Pedagog Univ, Vologda, Russia
关键词
Karlin-McGregor representation; orthogonal polynomials; transition function; transition probabilities; state-dependent killing rate; total catastrophe;
D O I
10.1016/j.spl.2004.11.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this note is to point out that Karlin and McGregor's integral representation for the transition probabilities of a birth-death process on a semi-infinite lattice with an absorbing bottom state remains valid if one allows the possibility of absorption into the bottom state from any other state. Conditions for uniqueness of the minimal transition function are also given. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [41] Limiting conditional distributions for birth-death processes
    Kijima, M
    Nair, MG
    Pollett, PK
    VanDoorn, EA
    [J]. ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) : 185 - 204
  • [42] The combinatorics of birth-death processes and applications to queues
    Bohm, W
    Krinik, A
    Mohanty, SG
    [J]. QUEUEING SYSTEMS, 1997, 26 (3-4) : 255 - 267
  • [43] LINEAR BIRTH AND DEATH PROCESSES WITH KILLING
    KARLIN, S
    TAVARE, S
    [J]. JOURNAL OF APPLIED PROBABILITY, 1982, 19 (03) : 477 - 487
  • [44] TRANSIENT ANALYSIS OF BIRTH-DEATH PROCESSES WITH 2 BOUNDARIES
    CAMPBELL, LL
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1985, 13 (02): : 123 - 130
  • [45] BOUNDS AND ASYMPTOTICS FOR THE RATE OF CONVERGENCE OF BIRTH-DEATH PROCESSES
    Van Doorn, E. A.
    Zeifman, A. I.
    Panfilova, T. L.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2010, 54 (01) : 97 - 113
  • [46] Evolutionary games of condensates in coupled birth-death processes
    Knebel, Johannes
    Weber, Markus F.
    Krueger, Torben
    Frey, Erwin
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [47] Coupling bounds for approximating birth-death processes by truncation
    Crawford, Forrest W.
    Stutz, Timothy C.
    Lange, Kenneth
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 109 : 30 - 38
  • [48] BIRTH-DEATH PROCESSES AND q-CONTINUED FRACTIONS
    Feng, Tony
    Kirsch, Rachel
    Villella, Elise
    Wage, Matt
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2703 - 2721
  • [49] PATH INTEGRAL APPROACH TO BIRTH-DEATH PROCESSES ON A LATTICE
    PELITI, L
    [J]. JOURNAL DE PHYSIQUE, 1985, 46 (09): : 1469 - 1483
  • [50] On the cycle maximum of birth-death processes and networks of queues
    Boucherie, Richard J.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (05): : 1064 - 1076