A distinct endosomal Ca2+/Mn2+ pump affects root growth through the secretory process

被引:88
|
作者
Li, Xiyan [1 ]
Chanroj, Salil [1 ]
Wu, Zhongyi [1 ]
Romanowsky, Shawn M. [2 ]
Harper, Jeffrey F. [2 ]
Sze, Heven [1 ]
机构
[1] Univ Maryland, Dept Mol Genet & Cell Biol, College Pk, MD 20742 USA
[2] Univ Nevada, Dept Biochem, Reno, NV 89557 USA
关键词
D O I
10.1104/pp.108.119909
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ca2+ is required for protein processing, sorting, and secretion in eukaryotic cells, although the particular roles of the transporters involved in the secretory system of plants are obscure. One endomembrane-type Ca-ATPase from Arabidopsis ( Arabidopsis thaliana), AtECA3, diverges from AtECA1, AtECA2, and AtECA4 in protein sequence; yet, AtECA3 appears similar in transport activity to the endoplasmic reticulum (ER)-bound AtECA1. Expression of AtECA3 in a yeast ( Saccharomyces cerevisiae) mutant defective in its endogenous Ca2+ pumps conferred the ability to grow on Ca2+-depleted medium and tolerance to toxic levels of Mn2+. A green fluorescent protein-tagged AtECA3 was functionally competent and localized to intracellular membranes of yeast, suggesting that Ca2+ and Mn2+ loading into internal compartment(s) enhanced yeast proliferation. In mesophyll protoplasts, AtECA3-green fluorescent protein associated with a subpopulation of endosome/prevacuolar compartments based on partial colocalization with the Ara7 marker. Interestingly, three independent eca3 T-DNA disruption mutants showed severe reduction in root growth normally stimulated by 3 mM Ca2+, indicating that AtECA3 function cannot be replaced by an ER-associated AtECA1. Furthermore, root growth of mutants is sensitive to 50 mu M Mn2+, indicating that AtECA3 is also important for the detoxification of excess Mn2+. Curiously, Ateca3 mutant roots produced 65% more apoplastic protein than wild-type roots, as monitored by peroxidase activity, suggesting that the secretory process was altered. Together, these results demonstrate that the role of AtECA3 is distinct from that of the more abundant ERAtECA1. AtECA3 supports Ca2+ stimulated root growth and the detoxification of high Mn2+, possibly through activities mediated by post-Golgi compartments that coordinate membrane traffic and sorting of materials to the vacuole and the cell wall.
引用
收藏
页码:1675 / 1689
页数:15
相关论文
共 50 条
  • [1] An endoplasmic reticulum-bound Ca2+/Mn2+ pump, ECA1, supports plant growth and confers tolerance to Mn2+ stress
    Wu, ZY
    Liang, F
    Hong, BM
    Young, JC
    Sussman, MR
    Harper, JF
    Sze, H
    [J]. PLANT PHYSIOLOGY, 2002, 130 (01) : 128 - 137
  • [2] MN2+ IONS PASS THROUGH CA2+ CHANNELS IN MYOEPITHELIAL CELLS
    ANDERSON, M
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 1979, 82 (OCT): : 227 - &
  • [3] The Ca2+/Mn2+ pumps in the Golgi apparatus
    Van Baelen, K
    Dode, L
    Vanoevelen, J
    Callewaert, G
    De Smedt, H
    Missiaen, L
    Parys, JB
    Raeymaekers, L
    Wuytack, F
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1742 (1-3): : 103 - 112
  • [4] A Host Ca2+/Mn2+ Ion Pump Is a Factor in the Emergence of Viral RNA Recombinants
    Jaag, Hannah M.
    Pogany, Judit
    Nagy, Peter D.
    [J]. CELL HOST & MICROBE, 2010, 7 (01) : 74 - 81
  • [5] The secretory pathway Ca2+/Mn2+-ATPase 2 is a Golgi-localized pump with high affinity for Ca2+ ions
    Vanoevelen, J
    Dode, L
    Van Baelen, K
    Fairclough, RJ
    Missiaen, L
    Raeymaekers, L
    Wuytack, F
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (24) : 22800 - 22808
  • [6] MN2+ AND CA2+ BINDING TO THE LIMA BEAN LECTINS
    PANDOLFINO, ER
    MAGNUSON, JA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1980, 255 (03) : 870 - 873
  • [7] REDUCTION OF ASTROCYTE GLYCOGEN BY MN2+ - PREVENTION BY CA2+
    DOMBRO, RS
    HUTSON, DG
    NORENBERG, MD
    [J]. JOURNAL OF NEUROCHEMISTRY, 1994, 62 : S72 - S72
  • [8] The Role of the Golgi-Resident SPCA Ca2+/Mn2+ Pump in Ionic Homeostasis and Neural Function
    He, Wenfang
    Hu, Zhiping
    [J]. NEUROCHEMICAL RESEARCH, 2012, 37 (03) : 455 - 468
  • [9] The Role of the Golgi-Resident SPCA Ca2+/Mn2+ Pump in Ionic Homeostasis and Neural Function
    Wenfang He
    Zhiping Hu
    [J]. Neurochemical Research, 2012, 37 : 455 - 468
  • [10] SPECTROPHOTOMETRIC MEASUREMENTS OF KINETICS OF CA2+ AND MN2+ ACCUMULATION IN MITOCHONDRIA
    MELA, L
    CHANCE, B
    [J]. BIOCHEMISTRY, 1968, 7 (11) : 4059 - &