共 50 条
Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy
被引:39
|作者:
Zhao, Yang
[2
]
Dong, Daoyin
[2
]
Reece, E. Albert
[2
,3
]
Wang, Ashley R.
[2
]
Yang, Peixin
[1
,2
,3
]
机构:
[1] Wenzhou Med Univ, Sch Pharmaceut Sci, Chinese Amer Res Inst Diabet Complicat, Wenzhou, Zhejiang, Peoples R China
[2] Univ Maryland, Sch Med, Dept Obstet Gynecol & Reprod Sci, Baltimore, MD 21201 USA
[3] Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA
基金:
美国国家卫生研究院;
中国国家自然科学基金;
关键词:
embryopathy;
maternal diabetes;
miR-27a;
nuclear factor erythroid 2-related factor 2;
oxidative stress;
NEURAL-TUBE DEFECTS;
ENDOPLASMIC-RETICULUM STRESS;
TRANSCRIPTION FACTOR NRF2;
HIGH GLUCOSE;
CELLULAR STRESS;
DOWN-REGULATION;
MOUSE MODEL;
EXPRESSION;
PATHWAY;
SYSTEM;
D O I:
10.1016/j.ajog.2017.10.040
中图分类号:
R71 [妇产科学];
学科分类号:
100211 ;
摘要:
BACKGROUND: Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. OBJECTIVE: In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. STUDY DESIGN: We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our in vivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 in vitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. RESULTS: We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to those from nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose-and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose-and time-dependent manner in cultured neural stem cells. In addition, we found that a miR-27a inhibitor abrogated the inhibitory effect of high glucose on nuclear factor erythroid 2-related factor 2 expression, and a miR-27a mimic suppressed nuclear factor erythroid 2-related factor 2 expression in cultured neural stem cells. Furthermore, our data indicated that the nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1 were downregulated by maternal diabetes in embryos on embryonic day 8.5 and high glucose in cultured neural stem cells. Inhibiting miR-27a restored expression of glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1. Overexpressing superoxide dismutase 2 reversed the maternal diabetes-induced increase of miR-27a and suppression of nuclear factor erythroid 2-related factor 2 and nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes. CONCLUSION: Our study demonstrates that maternal diabetes-induced oxidative stress increases miR-27a, which, in turn, suppresses nuclear factor erythroid 2-related factor 2 and its responsive antioxidant enzymes, resulting in diabetic embryopathy.
引用
收藏
页码:136.e1 / 136.e10
页数:10
相关论文