Molten-Salt-Assisted Chemical Vapor Deposition Process for Substitutional Doping of Monolayer MoS2 and Effectively Altering the Electronic Structure and Phononic Properties

被引:49
|
作者
Li, Wei [1 ,2 ]
Huang, Jianqi [5 ]
Han, Bo [3 ,4 ]
Xie, Chunyu [1 ]
Huang, Xiaoxiao [1 ,2 ]
Tian, Kesong [1 ,2 ]
Zeng, Yi [1 ,2 ]
Zhao, Zijing [1 ,2 ]
Gao, Peng [3 ,4 ,6 ]
Zhang, Yanfeng [1 ]
Yang, Teng [5 ]
Zhang, Zhidong [5 ]
Sun, Shengnan [1 ,2 ]
Hou, Yanglong [1 ,2 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[2] Beijing Innovat Ctr Engn Sci & Adv Technol BIC ES, Beijing Key Lab Magnetoelect Mat & Devices BKL MM, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
[4] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[5] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
2D; molten-salt-assisted chemical vapor deposition; molybdenum disulfide; substitutional doping; EDGE SITES; METAL; NANOSHEETS; GROWTH;
D O I
10.1002/advs.202001080
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Substitutional doping of layered transition metal dichalcogenides (TMDs) has been proved to be an effective route to alter their intrinsic properties and achieve tunable bandgap, electrical conductivity and magnetism, thus greatly broadening their applications. However, achieving valid substitutional doping of TMDs remains a great challenge to date. Herein, a distinctive molten-salt-assisted chemical vapor deposition (MACVD) method is developed to match the volatilization of the dopants perfectly with the growth process of monolayer MoS2, realizing the substitutional doping of transition metal Fe, Co, and Mn. This doping strategy effectively alters the electronic structure and phononic properties of the pristine MoS2. In addition, a temperature-dependent Raman spectrum is employed to explore the effect of dopants on the lattice dynamics and first-order temperature coefficient of monolayer MoS2, and this doping effect is illustrated in depth combined with the theoretical calculation. This work provides an intriguing and powerful doping strategy for TMDs through employing molten salt in the CVD system, paving the way for exploring new properties of 2D TMDs and extending their applications into spintronics, catalytic chemistry and photoelectric devices.
引用
收藏
页数:9
相关论文
共 36 条
  • [21] Doping MoS2 monolayer with nonmetal atoms to tune its electronic and magnetic properties, and chemical activity: a computational study
    Wen, Xin
    Yu, Shansheng
    Wang, Yongcheng
    Liu, Yuejie
    Wang, Hongxia
    Zhao, Jingxiang
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (15) : 5766 - 5772
  • [22] Structural and electronic properties of MoS2 and MoSe2 monolayers grown by chemical vapor deposition on Au(111)
    Picker, Julian
    Schaal, Maximilian
    Gan, Ziyang
    Gruenewald, Marco
    Neumann, Christof
    George, Antony
    Otto, Felix
    Forker, Roman
    Fritz, Torsten
    Turchanin, Andrey
    NANOSCALE ADVANCES, 2023, 6 (01): : 92 - 101
  • [23] Aerosol-Assisted Chemical Vapor Deposition of Lubricating MoS2 Films. Ferrous Substrates and Titanium Film Doping
    McCain, Matthew N.
    He, Bo
    Sanati, Javad
    Wang, Q. Jane
    Marks, Tobin J.
    CHEMISTRY OF MATERIALS, 2008, 20 (16) : 5438 - 5443
  • [24] Dual-Additive Assisted Chemical Vapor Deposition for the Growth of Mn-Doped 2D MoS2 with Tunable Electronic Properties
    Cai, Zhengyang
    Shen, Tianze
    Zhu, Qi
    Feng, Simin
    Yu, Qiangmin
    Liu, Jiaman
    Tang, Lei
    Zhao, Yue
    Wang, Jiangwei
    Liu, Bilu
    Cheng, Hui-Ming
    SMALL, 2020, 16 (15)
  • [25] Defect Passivation and Photoluminescence Enhancement of Monolayer MoS2 Crystals through Sodium Halide-Assisted Chemical Vapor Deposition Growth
    Wang, Wenfeng
    Shu, Haibo
    Wang, Jun
    Cheng, Yecheng
    Liang, Pei
    Chen, Xiaoshuang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (08) : 9563 - 9571
  • [26] A Novel Carbon-Assisted Chemical Vapor Deposition Growth of Large-Area Uniform Monolayer MoS2 and WS2
    Bae, Jeonghwan
    Yoo, Youngdong
    NANOMATERIALS, 2021, 11 (09)
  • [27] Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2
    Chen, Wei
    Zhao, Jing
    Zhang, Jing
    Gu, Lin
    Yang, Zhenzhong
    Li, Xiaomin
    Yu, Hua
    Zhu, Xuetao
    Yang, Rong
    Shi, Dongxia
    Lin, Xuechun
    Guo, Jiandong
    Bai, Xuedong
    Zhang, Guangyu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (50) : 15632 - 15635
  • [28] Direct Chemical Vapor Deposition Growth of Monolayer MoS2 on TiO2 Nanorods and Evidence for Doping-Induced Strong Photoluminescence Enhancement
    Mawlong, Larionette P. L.
    Paul, Kamal Kumar
    Giri, P. K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (26): : 15017 - 15025
  • [29] Large-area growth of monolayer MoS2 by using atmospheric-pressure chemical vapor deposition with nucleation controlling process
    Ding, Binbin
    Zhu, Changjun
    Wang, Tianming
    Li, Lianbi
    Li, Zebin
    Cheng, Lin
    Feng, Song
    Zhang, Guoqing
    Zang, Yuan
    Hu, Jichao
    Li, Lei
    Xia, Caijuan
    SURFACE AND INTERFACE ANALYSIS, 2024, 56 (01) : 22 - 31
  • [30] Glass-Assisted Chemical Vapor Deposition-Grown Monolayer MoS2: Effective Control of Size Distribution via Surface Patterning
    Aras, Fikret Gonca
    Avad, Jihad
    Yeltik, Aydan
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219 (24):