Relaxor behaviour of low lead and lead free ferroelectric ceramics of the Na0.5Bi0.5TiO3-PbTiO3 and Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 systems

被引:155
|
作者
Saïd, S [1 ]
Mercurio, JP [1 ]
机构
[1] Univ Limoges, Fac Sci, UMR 6638, F-87060 Limoges, France
关键词
BaTiO3 and titanates; dielectric properties; relaxation;
D O I
10.1016/S0955-2219(01)00012-7
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ceramics with compositions belonging to the Na0.5Bi0.5TiO3-PbTiO3 and Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 systems were fabricated by natural sintering of powders prepared by thermal decomposition of adequate precursor solutions. The ferroelectric to paraelectric phase transitions were studied by variable temperature X-ray diffractometry, differential scanning calorimetry and impedance measurement in a wide range of temperature and frequency. In contrast with pure NBT, both the permittivity and dielectric loss of the NBT-rich solid solutions show a strongly temperature and frequency dependent behaviour. The permittivity decreases and its maximum is shifted towards high temperatures as the frequency increases. In the high temperature range, the thermal variation of the permittivity is well described by 1/epsilon - 1/epsilon (m) = C(T- T-m)(gamma) with gamma close to 1.5. Such a relaxor-like behaviour is interpreted in terms of cation disorder due to the statistical repartition of (Na,Bi) and Pb (or Na and K). This would be one very rare case of relaxor phenomena correlated with the A-site occupancy in perovskite-like materials. (C) 2001 Published by Elsevier Science Ltd.
引用
收藏
页码:1333 / 1336
页数:4
相关论文
共 50 条
  • [31] Structure and electrical properties of Na0.5Bi0.5TiO3 -K0.5Bi0.5TiO3-BaMnO3 lead-free piezoelectric ceramics
    Jiangxi Key Laboratory of Advanced Ceramic Materials, College of Material Science and Engineering, Jingdezhen 333001, China
    Rengong Jingti Xuebao, 2012, 4 (916-921):
  • [32] Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 (NBT-KBT) system: A structural and electrical study
    Elkechai, O
    Manier, M
    Mercurio, JP
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1996, 157 (02): : 499 - 506
  • [33] Uniaxial Stress Dependence of the Permittivity and the Hardening Effect in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 System
    Koenig, Jakob
    Suvorov, Danilo
    FERROELECTRICS, 2014, 470 (01) : 201 - 211
  • [34] Bipolar and unipolar fatigue property in Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-SrTiO3 lead-free piezoelectric ceramics
    Zhu, Yinyin
    Zhou, Helezi
    Sun, Dazhi
    PHYSICA B-CONDENSED MATTER, 2019, 575
  • [35] Physical and Electrical Properties of Lead-Free (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Ceramics
    Wang, C. H.
    ADVANCED MATERIALS, PTS 1-4, 2011, 239-242 : 3240 - 3243
  • [36] Dielectric and Piezoelectric Properties of Lead-free (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Ceramics
    Cho, J. A.
    Kuk, M. -H.
    Sung, Y. S.
    Lee, S. H.
    Song, T. K.
    Jeong, S. J.
    Song, J. S.
    Kim, M. -H.
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2005, 15 (10): : 639 - 643
  • [37] Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 lead-free ceramics
    Jiefeng Zhao
    Minghe Cao
    Zhijian Wang
    Qi Xu
    Lin Zhang
    Zhonghua Yao
    Hua Hao
    Hanxing Liu
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 466 - 473
  • [38] Structure and electrical properties of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics
    Lin, Dunmin
    Kwok, K. W.
    Chan, H. L. W.
    SOLID STATE IONICS, 2008, 178 (37-38) : 1930 - 1937
  • [39] Electrical properties and relaxor phase evolution of Nb-Modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-SrTiO3 lead-free ceramics
    Zhou, Xuefan
    Yan, Zhongna
    Qi, He
    Wang, Lu
    Wang, Siyu
    Wang, Yuan
    Jiang, Chao
    Luo, Hang
    Zhang, Dou
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (07) : 2310 - 2317
  • [40] Dielectric, thermal and ferroelectric properties of 0.92Na0.5Bi0.5TiO3-0.08PbTiO3 and 0.4Na0.5Bi0.5TiO3-0.6PbTiO3 ceramics
    Karpierz, M.
    Suchanicz, J.
    Sitko, D.
    FERROELECTRICS, 2016, 497 (01) : 79 - 84