Recognizing hyperelliptic graphs in polynomial time

被引:2
|
作者
Bodewes, Jelco M. [1 ]
Bodlaender, Hans L. [1 ]
Cornelissen, Gunther [2 ]
van der Wegen, Marieke [2 ]
机构
[1] Univ Utrecht, Dept Informat, Postbus 80-089, NL-3508 TB Utrecht, Netherlands
[2] Univ Utrecht, Math Inst, Postbus 80-010, NL-3508 TA Utrecht, Netherlands
关键词
Algorithms; Gonality; Graphs; Hyperelliptic; Reduction rules; Treewidth; CHIP-FIRING GAMES; ALGORITHMS; CURVES;
D O I
10.1016/j.tcs.2020.02.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Based on analogies between algebraic curves and graphs, Baker and Norine introduced divisorial gonality, a graph parameter for multigraphs related to treewidth, multigraph algorithms and number theory. Various equivalent definitions of the gonality of an algebraic curve translate to differentnotions of gonality for graphs, called stable gonalityand stable divisorial gonality. We consider so-called hyperelliptic graphs(multigraphs of gonality 2, in any meaning of graph gonality) and provide a safe and complete set of reduction rules for such multigraphs. This results in an algorithm to recognize hyperelliptic graphs in time O(m + n logn), where nis the number of vertices and mthe number of edges of the multigraph. A corollary is that we can decide with the same runtime whether a two-edge-connected graph Gadmits an involution ssuch that the quotient G/<sigma > is a tree. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:121 / 146
页数:26
相关论文
共 50 条
  • [31] Colouring random graphs in expected polynomial time
    Coja-Oghlan, A
    Taraz, A
    [J]. STACS 2003, PROCEEDINGS, 2003, 2607 : 487 - 498
  • [32] Bandwidth of bipartite permutation graphs in polynomial time
    Heggernes, Pinar
    Kratsch, Dieter
    Meister, Daniel
    [J]. LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 216 - +
  • [33] Bandwidth of bipartite permutation graphs in polynomial time
    Heggernes, Pinar
    Kratsch, Dieter
    Meister, Daniel
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 533 - 544
  • [34] Recognizing Top-Monotonic Preference Profiles in Polynomial Time
    Magiera, Krzysztof
    Faliszewski, Piotr
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 324 - 330
  • [35] Recognizing Top-Monotonic Preference Profiles in Polynomial Time
    Magiera, Krzysztof
    Faliszewski, Piotr
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 66 : 57 - 84
  • [36] Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, II
    Harvey, David
    Sutherland, Andrew V.
    [J]. FROBENIUS DISTRIBUTIONS: LANG-TROTTER AND SATO-TATE CONJECTURES, 2016, 663 : 127 - 147
  • [37] Recognizing Optimal 1-Planar Graphs in Linear Time
    Franz J. Brandenburg
    [J]. Algorithmica, 2018, 80 : 1 - 28
  • [38] Recognizing Optimal 1-Planar Graphs in Linear Time
    Brandenburg, Franz J.
    [J]. ALGORITHMICA, 2018, 80 (01) : 1 - 28
  • [39] RECOGNIZING P4-SPARSE GRAPHS IN LINEAR TIME
    JAMISON, B
    OLARIU, S
    [J]. SIAM JOURNAL ON COMPUTING, 1992, 21 (02) : 381 - 406
  • [40] Recognizing i-triangulated graphs in O(mn) time
    Roussel, F
    Rusu, I
    [J]. INFORMATION PROCESSING LETTERS, 2000, 76 (03) : 141 - 147