Sliding-Mode Synchronization Control for Uncertain Fractional-Order Chaotic Systems with Time Delay

被引:38
|
作者
Liu, Haorui [1 ]
Yang, Juan [2 ]
机构
[1] Dezhou Univ, Sch Automot Engn, Dezhou 253023, Peoples R China
[2] Dezhou Univ, Sch Econ & Management, Dezhou 253023, Peoples R China
来源
ENTROPY | 2015年 / 17卷 / 06期
关键词
sliding-mode control; fractional order chaotic systems; uncertainty time delay system; single controller; TRANSIENTS;
D O I
10.3390/e17064202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Specifically setting a time delay fractional financial system as the study object, this paper proposes a single controller method to eliminate the impact of model uncertainty and external disturbances on the system. The proposed method is based on the stability theory of Lyapunov sliding-mode adaptive control and fractional-order linear systems. The controller can fit the system state within the sliding-mode surface so as to realize synchronization of fractional-order chaotic systems. Analysis results demonstrate that the proposed single integral, sliding-mode control method can control the time delay fractional power system to realize chaotic synchronization, with strong robustness to external disturbance. The controller is simple in structure. The proposed method was also validated by numerical simulation.
引用
收藏
页码:4202 / 4214
页数:13
相关论文
共 50 条
  • [41] Sliding-mode control for uncertain stochastic systems with time delay
    Shen, Yanjun
    Shen, Weimin
    Gu, Jason
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, 2005, : 1224 - 1229
  • [42] Synchronization of different order fractional-order chaotic systems using modify adaptive sliding mode control
    Al-sawalha, M. Mossa
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [43] Synchronization of different order fractional-order chaotic systems using modify adaptive sliding mode control
    M. Mossa Al-sawalha
    [J]. Advances in Difference Equations, 2020
  • [44] Synchronization of fractional-order chaotic systems with uncertain parameters
    Zhang, Hong
    Pu, Qiumei
    [J]. ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 723 - 727
  • [45] Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control
    Chen, Diyi
    Zhang, Runfan
    Sprott, J. C.
    Chen, Haitao
    Ma, Xiaoyi
    [J]. CHAOS, 2012, 22 (02)
  • [46] Modified projective synchronization of fractional-order chaotic systems via active sliding mode control
    Wang, Xingyuan
    Zhang, Xiaopeng
    Ma, Chao
    [J]. NONLINEAR DYNAMICS, 2012, 69 (1-2) : 511 - 517
  • [47] Modified projective synchronization of fractional-order chaotic systems based on active sliding mode control
    Yan, Xiaomei
    Du, Qi
    Shang, Ting
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 3853 - 3858
  • [48] Modified projective synchronization of fractional-order chaotic systems via active sliding mode control
    Xingyuan Wang
    Xiaopeng Zhang
    Chao Ma
    [J]. Nonlinear Dynamics, 2012, 69 : 511 - 517
  • [49] Sliding mode synchronization of an uncertain fractional order chaotic system
    Hosseinnia, S. H.
    Ghaderi, R.
    Ranjbar, A. N.
    Mahmoudian, M.
    Momani, S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1637 - 1643
  • [50] Second-order predefined-time sliding-mode control of fractional-order systems
    Munoz-Vazquez, Aldo Jonathan
    Sanchez-Torres, Juan Diego
    Defoort, Michael
    [J]. ASIAN JOURNAL OF CONTROL, 2022, 24 (01) : 74 - 82