Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals

被引:71
|
作者
McLachlan, RI [1 ]
Quispel, GRW
Robidoux, N
机构
[1] Massey Univ, Dept Math, Palmerston North, New Zealand
[2] La Trobe Univ, Dept Math, Bundoora, Vic 3083, Australia
[3] Massey Univ, Dept Math, Palmerston North, New Zealand
关键词
D O I
10.1103/PhysRevLett.81.2399
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that systems with a first integral (i.e., a constant of motion) or a Lyapunov function can be written as "linear-gradient systems," (x) over dot = L(x)del V(x), for an appropriate matrix function L, with a generalization to several integrals or Lyapunov functions. The discrete-time analog, Delta x/Delta t = L<(del)over bar>V, where V is a "discrete gradient," preserves V as an integral or Lyapunov function, respectively. [S0031-9007(98)07076-8].
引用
收藏
页码:2399 / 2403
页数:5
相关论文
共 50 条
  • [1] On First Integrals of Linear Hamiltonian Systems
    Zheglov, A. B.
    Osipov, D. V.
    [J]. DOKLADY MATHEMATICS, 2018, 98 (03) : 616 - 618
  • [2] On First Integrals of Linear Hamiltonian Systems
    A. B. Zheglov
    D. V. Osipov
    [J]. Doklady Mathematics, 2018, 98 : 616 - 618
  • [3] Constrained mechanical systems and gradient systems with strong Lyapunov functions
    Chen, Xiangwei
    Mei, Fengxiang
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2016, 76 : 91 - 95
  • [4] Method of Lyapunov Functions for Controllable Hamiltonian Systems
    Shmyrov, Alexander
    Shmyrov, Vasily
    [J]. 2014 20TH INTERNATIONAL WORKSHOP ON BEAM DYNAMICS AND OPTIMIZATION (BDO), 2014, : 157 - 157
  • [5] Lyapunov functions for quasi-Hamiltonian systems
    Huang, Z. L.
    Jin, X. L.
    Zhu, W. Q.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2009, 24 (03) : 374 - 381
  • [6] FIRST INTEGRALS OF HAMILTONIAN SYSTEMS: THE INVERSE PROBLEM
    Naz, Rehana
    Mahomed, Fazal M.
    Chaudhry, Azam
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (10): : 2829 - 2840
  • [7] Lyapunov functions for dynamically gradient impulsive systems
    Bonotto, Everaldo M.
    Bortolan, Matheus C.
    Pereira, Fabiano
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 384 : 279 - 325
  • [8] EXPONENTIAL INTEGRATORS PRESERVING FIRST INTEGRALS OR LYAPUNOV FUNCTIONS FOR CONSERVATIVE OR DISSIPATIVE SYSTEMS
    Li, Yu-Wen
    Wu, Xinyuan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03): : A1876 - A1895
  • [9] First integrals of hamiltonian and non-hamiltonian systems and chaos
    Bouquet, S.
    Dewisme, A.
    [J]. Proceedings Needs on Nonlinear Evolution Equations and Dynamical Systems, 1992,
  • [10] Darboux polynomials and first integrals of polynomial Hamiltonian systems
    Pranevich, Andrei
    Grin, Alexander
    Musafirov, Eduard
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 109