Existence of solutions to a class of asymptotically linear Schrodinger equations in Rn via the Pohozaev manifold

被引:17
|
作者
Carriao, Paulo Cesar [1 ]
Lehrer, Raquel [2 ]
Miyagaki, Olimpio Hiroshi [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Estadual Oeste Parana UNIOESTE, Ctr Ciencias Exatas & Tecnol CCET, BR-85819110 Cascavel, Parana, Brazil
[3] Univ Fed Juiz de Fora, Dept Matemat, BR-36036330 Juiz De Fora, MG, Brazil
关键词
Asymptotic behavior; Pohozaev manifold; Positive solution; Schrodinger equation; Variational method; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS; EXPONENT;
D O I
10.1016/j.jmaa.2015.02.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we investigate the nonexistence of a least energy solution and the existence of a positive solution for a class of nonhomogeneous asymptotically linear Schrodinger equations in R-n via the Pohozaev manifold. After changing the variables, the quasilinear operator becomes a semilinear nonhomogeneous operator. The technique used employs variational methods that are constrained to the Pohozaev manifold, which are combined with the splitting lemma. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 183
页数:19
相关论文
共 50 条
  • [41] Existence and multiplicity of solutions for asymptotically linear, noncoercive elliptic equations
    Motreanu, Dumitru
    Motreanu, Viorica V.
    Papageorgiou, Nikolaos S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2010, 159 (1-2): : 59 - 80
  • [42] Existence of solutions for asymptotically 'linear' p-Laplacian equations
    Liu, S
    Li, S
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 81 - 87
  • [43] EXISTENCE OF POSITIVE SOLUTIONS OF A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS ON RN
    Mo, Jing
    Yang, Zuodong
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (04): : 501 - 517
  • [44] Existence of solutions for a class of elliptic equations in RN with vanishing potentials
    Alves, Claudianor O.
    Souto, Marco A. S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5555 - 5568
  • [45] Existence of positive solutions for a class of nonhomogeneous elliptic equations in RN
    Adachi, S
    Tanaka, K
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (05) : 685 - 705
  • [46] Asymptotically linear fractional Schrodinger equations
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (04) : 529 - 558
  • [47] Positive solutions for generalized quasilinear Schrodinger equations with asymptotically linear nonlinearities
    Li, Guofa
    Huang, Yisheng
    [J]. APPLICABLE ANALYSIS, 2021, 100 (05) : 1051 - 1066
  • [48] Ground state solution and multiple solutions to asymptotically linear Schrodinger equations
    Fang, Xiang-Dong
    Han, Zhi-Qing
    [J]. BOUNDARY VALUE PROBLEMS, 2014, : 1 - 8
  • [49] Positive solutions for asymptotically linear Schrodinger-Kirchhoff-type equations
    Liu, Zhisu
    Guo, Shangjiang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (04) : 571 - 580
  • [50] POSITIVE SOLUTIONS FOR ASYMPTOTICALLY 3-LINEAR QUASILINEAR SCHRODINGER EQUATIONS
    Li, Guofa
    Cheng, Bitao
    Huang, Yisheng
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,