The complements of path and cycle are determined by their distance (signless) Laplacian spectra

被引:10
|
作者
Xue, Jie [1 ]
Liu, Shuting [1 ]
Shu, Jinlong [1 ]
机构
[1] East China Normal Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Cospectrality; Distance Laplacian matrix; Distance signless Laplacian matrix; GRAPHS; EIGENVALUES;
D O I
10.1016/j.amc.2018.01.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected graph with vertex set V(G) and edge set E(G). Let T(G) be the diagonal matrix of vertex transmissions of G and D(G) be the distance matrix of G. The distance Laplacian matrix of G is defined as L(G) = T(G) - D(G). The distance signless Laplacian matrix of G is defined as Q(G) = T(G) + D(G). In this paper, we show that the complements of path and cycle are determined by their distance(signless) Laplacian spectra. (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 143
页数:7
相关论文
共 50 条
  • [21] The distance Laplacian and distance signless Laplacian spectrum of some graphs
    Lu, Pengli
    Liu, Wenzhi
    [J]. ARS COMBINATORIA, 2020, 152 : 121 - 128
  • [22] On some forests determined by their Laplacian or signless Laplacian spectrum
    Simic, Slobodan K.
    Stanic, Zoran
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (01) : 171 - 178
  • [23] The least signless Laplacian eignvalue of the complements of unicyclic graphs
    Yu, Gui-Dong
    Fan, Yi-Zheng
    Ye, Miao-Lin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 306 : 13 - 21
  • [24] Spectra, signless Laplacian and Laplacian spectra of complementary prisms of graphs
    Cardoso, Domingos M.
    Carvalho, Paula
    de Freitas, Maria Aguieiras A.
    Vinagre, Cybele T. M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 325 - 338
  • [25] The second least eigenvalue of the signless Laplacian of the complements of trees
    Ajmal, Muhammad
    Rehman, Masood Ur
    Kamran, Tayyab
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2019, 7 (02) : 265 - 275
  • [26] Distance signless Laplacian spectrum of a graph
    Jia, Huicai
    Shiu, Wai Chee
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (04) : 653 - 672
  • [27] Distance signless Laplacian spectral radius for the existence of path-factors in graphs
    Zhou, Sizhong
    Sun, Zhiren
    Liu, Hongxia
    [J]. AEQUATIONES MATHEMATICAE, 2024, 98 (03) : 727 - 737
  • [28] On the Distance Signless Laplacian Spectrum of Graphs
    A. Alhevaz
    M. Baghipur
    E. Hashemi
    H. S. Ramane
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2603 - 2621
  • [29] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    [J]. Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [30] On the Distance Signless Laplacian Spectrum of Graphs
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Ramane, H. S.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2603 - 2621