A novel fault-tolerance central controller for a space robot

被引:0
|
作者
Zheng, Yili [1 ]
Sun, Hanxu [1 ]
Wang, Xiaolin
Jia, Qingxuan [1 ]
Shi, Guozhen [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Automat, Beijing 100876, Peoples R China
关键词
space robot; controller; space environment; ARM; FPGA; CORDIC; EDAC;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Considering the influence of the outer space environment on the computer system, a novel fault-tolerance central controller for a 6-DOF (Degree of Freedom) space robot is presented. The design of the controller is mainly based on the dual-redundancy idea and COTS (Commercial-Off-The-Shelf) components. ARM processor and FPGA co-processor are integrated in this controller. The ARM processor uses AT91FR40162, which takes charge of the tractory planning for the space robot. Meanwhile, using the CORDIC (Coordinate Rotation Digital Computer) algorithm, the forward and inverse kinematics computation of the space robot is simplified and implemented in FPGA co-processor. This approach can effectively reduce the calculation time of kinematics control and optimize real-time performance of the space robot. The structure of the central controller and the control flow for the space robot are presented particularly. The experiment shows that the performance of the central controller meets the reliability, real-time and accuracy requirement of the space robot.
引用
收藏
页码:752 / 757
页数:6
相关论文
共 50 条
  • [1] Fault-tolerance control of robot manipulators
    Terra, Marco Henrique
    Bergerman, Marcel
    Tinós, Renato
    Siqueira, Adriano A. G.
    [J]. Controle y Automacao, 2001, 12 (02): : 73 - 92
  • [2] A Systematic Robot Fault-tolerance Approach
    Shim, Bingu
    Baek, Beomho
    Park, Sooyong
    [J]. 2009 IEEE 33RD INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2009, : 618 - 619
  • [3] A Robot Fault-tolerance Approach Based on Fault Type
    Shim, Bingu
    Baek, Beomho
    Kim, Suntae
    Park, Sooyong
    [J]. 2009 NINTH INTERNATIONAL CONFERENCE ON QUALITY SOFTWARE (QSIC 2009), 2009, : 296 - 304
  • [4] Safety in numbers: fault-tolerance in robot swarms
    Winfield, Alan F. T.
    Nembrini, Julien
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2006, 1 (01) : 30 - 37
  • [5] Robot fault-tolerance using an embryonic array
    Jackson, AH
    Canham, R
    Tyrrell, AM
    [J]. 2003 NASA/DOD CONFERENCE ON EVOLVABLE HARDWARE, 2003, : 91 - 100
  • [6] Discrete Model of Mobile Robot Assemble Fault-Tolerance
    Larkin, Eugene
    Bogomolov, Alexey
    Privalov, Aleksandr
    [J]. INTERACTIVE COLLABORATIVE ROBOTICS (ICR 2019), 2019, 11659 : 204 - 215
  • [7] FAULT-TOLERANCE
    GROSSPIETSCH, KE
    [J]. MICROPROCESSING AND MICROPROGRAMMING, 1993, 38 (1-5): : 783 - 783
  • [8] Designing masking fault-tolerance via nonmasking fault-tolerance
    Arora, A
    Kulkarni, SS
    [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1998, 24 (06) : 435 - 450
  • [9] A dynamical controller with fault-tolerance: Real-time experiments
    Martinez-Guerra, Rafael
    Trejo-Zuniga, Ivan
    Melendez-Vazquez, Fidel
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (08): : 3378 - 3404
  • [10] ON FAULT-TOLERANCE OF SYNTAX
    SLISSENKO, AO
    [J]. THEORETICAL COMPUTER SCIENCE, 1993, 119 (01) : 215 - 222