Steiner tree problem with minimum number of Steiner points and bounded edge-length

被引:220
|
作者
Lin, GH
Xue, GL [1 ]
机构
[1] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
[2] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
基金
美国国家科学基金会;
关键词
algorithms; approximation algorithms; Steiner minimum trees; VLSI design; WDM optimal networks; wireless communications;
D O I
10.1016/S0020-0190(98)00201-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the Steiner tree problem with minimum number of Steiner points and bounded edge-length (STP-MSPBEL), which asks for a tree interconnecting a given set of n terminal points and a minimum number of Steiner points such that the Euclidean length of each edge is no more than a given positive constant. This problem has applications in VLSI design, WDM optimal networks and wireless communications. We prove that this problem is NP-complete and present a polynomial time approximation algorithm whose worst-case performance ratio is 5. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 50 条
  • [21] Algorithms for the minimum diameter terminal Steiner tree problem
    Ding, Wei
    Qiu, Ke
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 837 - 853
  • [22] Minimum rectilinear Steiner tree of n points in the unit square
    Dumitrescu, Adrian
    Jiang, Minghui
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 68 : 253 - 261
  • [23] When Diameter Matters: Parameterized Approximation Algorithms for Bounded Diameter Minimum Steiner Tree Problem
    Ali Mashreghi
    Alireza Zarei
    Theory of Computing Systems, 2016, 58 : 287 - 303
  • [24] When Diameter Matters: Parameterized Approximation Algorithms for Bounded Diameter Minimum Steiner Tree Problem
    Mashreghi, Ali
    Zarei, Alireza
    THEORY OF COMPUTING SYSTEMS, 2016, 58 (02) : 287 - 303
  • [25] The edge Steiner number of a graph
    Santhakumaran, A. P.
    John, J.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (05): : 677 - 696
  • [26] Variable neighbourhood search for the minimum labelling Steiner tree problem
    Sergio Consoli
    Kenneth Darby-Dowman
    Nenad Mladenović
    José Andrés Moreno-Pérez
    Annals of Operations Research, 2009, 172 : 71 - 96
  • [27] Intelligent optimization algorithms for Euclidean Steiner minimum tree problem
    College of Management, University of Shanghai for Science and Technology, Shanghai 200093, China
    Jisuanji Gongcheng, 2006, 10 (201-203):
  • [28] Variable neighbourhood search for the minimum labelling Steiner tree problem
    Consoli, Sergio
    Darby-Dowman, Kenneth
    Mladenovic, Nenad
    Andres Moreno-Perez, Jose
    ANNALS OF OPERATIONS RESEARCH, 2009, 172 (01) : 71 - 96
  • [29] The Edge Steiner Number of a Graph
    Frondoza, Michael B.
    Canoy, Sergio R., Jr.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (01) : 53 - 59
  • [30] Parallel Minimum Spanning Tree Heuristic for the Steiner problem in graphs
    Akbari, Hoda
    Iramnanesh, Zeinab
    Ghodsi, Mohammad
    2007 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLS 1 AND 2, 2007, : 443 - 450