Comparing Dynamic Causal Models using AIC, BIC and Free Energy

被引:195
|
作者
Penny, W. D. [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
基金
英国惠康基金;
关键词
Bayesian; Model comparison; Brain connectivity; Dynamic Causal Modelling; fMRI; INFERENCE; SELECTION; BAYES;
D O I
10.1016/j.neuroimage.2011.07.039
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In neuroimaging it is now becoming standard practise to fit multiple models to data and compare them using a model selection criterion. This is especially prevalent in the analysis of brain connectivity. This paper describes a simulation study which compares the relative merits of three model selection criteria (i) Akaike's Information Criterion (AIC), (ii) the Bayesian Information Criterion (BIC) and (iii) the variational Free Energy. Differences in performance are examined in the context of General Linear Models (GLMs) and Dynamic Causal Models (DCMs). We find that the Free Energy has the best model selection ability and recommend it be used for comparison of DCMs. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 50 条
  • [21] Dynamic causal models and autopoietic systems
    David, Olivier
    [J]. BIOLOGICAL RESEARCH, 2007, 40 (04) : 487 - 502
  • [22] Dynamic Causal Models for phase coupling
    Penny, W. D.
    Litvak, V.
    Fuentemilla, L.
    Duzel, E.
    Friston, K. J.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2009, 183 (01) : 19 - 30
  • [23] Nonlinear dynamic causal models for fMRI
    Stephan, Klaas Enno
    Kasper, Lars
    Harrison, Lee M.
    Daunizeau, Jean
    den Ouden, Hanneke E. M.
    Breakspear, Michael
    Friston, Karl J.
    [J]. NEUROIMAGE, 2008, 42 (02) : 649 - 662
  • [24] Causal Models and Metaphysics - Part 1: Using Causal Models
    Mcdonald, Jennifer
    [J]. PHILOSOPHY COMPASS, 2024, 19 (04)
  • [25] Learning Causal Bayesian Networks Using Minimum Free Energy Principle
    Takashi Isozaki
    [J]. New Generation Computing, 2012, 30 : 17 - 52
  • [26] Learning Causal Bayesian Networks Using Minimum Free Energy Principle
    Isozaki, Takashi
    [J]. NEW GENERATION COMPUTING, 2012, 30 (01) : 17 - 52
  • [27] BUILDING DYNAMIC MODELS OF TECHNICAL-ECONOMIC SYSTEMS USING CAUSAL DIAGRAMS
    Milosz, M.
    Kozhanova, A.
    [J]. INTED2016: 10TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2016, : 6152 - 6160
  • [28] On Dynamic Network Models and Application to Causal Impact
    Chen, Yu-Chia
    Bijral, Avleen S.
    Ferres, Juan Lavista
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1194 - 1204
  • [29] Comparing different dynamic stall models
    Holierhoek, J. G.
    de Vaal, J. B.
    van Zuijlen, A. H.
    Bijl, H.
    [J]. WIND ENERGY, 2013, 16 (01) : 139 - 158
  • [30] Comparing static and dynamic transportation models
    Murthy, S
    [J]. TRANSPORTATION, LAND USE, AND AIR QUALITY, CONFERENCE PROCEEDINGS: MAKING THE CONNECTION, 1998, : 681 - 690