Symmetry-adapted representation learning

被引:20
|
作者
Anselmi, Fabio [1 ,2 ]
Evangelopoulos, Georgios [1 ,3 ]
Rosasco, Lorenzo [1 ,2 ]
Poggio, Tomaso [1 ]
机构
[1] MIT, Ctr Brains Minds & Machines, MIT & McGovern Inst Brain Res, Cambridge, MA USA
[2] Ist Italiano Tecnol, LCSL, Genoa, Italy
[3] X Alphabet Inc, Mountain View, CA USA
关键词
Representation learning; Equivariant representations; Invariant representations; Dictionary learning; Convolutional neural networks; Regularization; Data transformations; INVARIANT OBJECT RECOGNITION; PATTERN-RECOGNITION; SIZE-INVARIANT; LIE-GROUPS; FEATURES; NETWORK; MODELS; SHIFT;
D O I
10.1016/j.patcog.2018.07.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the use of data symmetries, in the sense of equivalences under signal transformations, as priors for learning symmetry-adapted data representations, i.e., representations that are equivariant to these transformations. We rely on a group-theoretic definition of equivariance and provide conditions for enforcing a learned representation, for example the weights in a neural network layer or the atoms in a dictionary, to have the structure of a group and specifically the group structure in the distribution of the input. By reducing the analysis of generic group symmetries to permutation symmetries, we devise a regularization scheme for representation learning algorithm, using an unlabeled training set. The proposed regularization is aimed to be a conceptual, theoretical and computational proof of concept for symmetry-adapted representation learning, where the learned data representations are equivariant or invariant to transformations, without explicit knowledge of the underlying symmetries in the data. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [21] SYMMETRY-ADAPTED POLYNOMIALS OF POINT GROUPS
    FASSLER, A
    SCHWARZENBACH, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (02): : 190 - 200
  • [22] Imperceptible Image Steganography Using Symmetry-Adapted Deep Learning Techniques
    Khalifa, Amal
    Guzman, Anthony
    SYMMETRY-BASEL, 2022, 14 (07):
  • [23] A SYMMETRY-ADAPTED FLEXIBILITY APPROACH FOR MULTISTORY SPACE FRAMES .1. GENERAL OUTLINE AND SYMMETRY-ADAPTED REDUNDANTS
    ZINGONI, A
    PAVLOVIC, MN
    ZLOKOVIC, GM
    STRUCTURAL ENGINEERING REVIEW, 1995, 7 (02): : 107 - 119
  • [24] Formulation and implementation of direct algorithm for the symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method
    Fukuda, Ryoichi
    Nakatsuji, Hiroshi
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (09):
  • [25] Electrostatically embedded symmetry-adapted perturbation theory
    Glick, Caroline S.
    Alenaizan, Asem
    Cheney, Daniel L.
    Cavender, Chapin E.
    Sherrill, C. David
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (13):
  • [26] VARIATIONAL PROCEDURE FOR SYMMETRY-ADAPTED WANNIER FUNCTIONS
    BOEHM, JV
    CALAIS, JL
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (18): : 3661 - 3675
  • [27] THE DERIVATION OF A SYMMETRY-ADAPTED GENERALIZED SPIN HAMILTONIAN
    BUCKMASTER, HA
    CHATTERJEE, R
    TUSZYNSKI, JA
    JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08): : 4001 - 4004
  • [28] Symmetry-adapted correlation function for semiclassical quantization
    Hotta, K
    Takatsuka, K
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (17):
  • [29] Recent developments in symmetry-adapted perturbation theory
    Patkowski, Konrad
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2020, 10 (03)