We study the bifurcation curve and exact multiplicity of positive solutions of a two-point boundary value problem arising in a theory of thermal explosion [GRAPHICS] where lambda > 0 is the Frank Kamenetskii parameter and alpha > 0 is the activation energy parameter. By developing some new time-map techniques and applying Sturm's theorem, we prove that, if alpha >= alpha ** approximate to 4.107, the bifurcation curve is S-shaped on the (lambda, parallel to u parallel to(infinity))-plane. Our result improves one of the main results in Hung and Wang (J. Differential Equations 251 (2011) 223-237).
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Dept Appl Math, Xian, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Dept Appl Math, Xian, Peoples R China
Fatima, Samara
Sabir, Zulqurnain
论文数: 0引用数: 0
h-index: 0
机构:
Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, LebanonXi An Jiao Tong Univ, Sch Math & Stat, Dept Appl Math, Xian, Peoples R China
Sabir, Zulqurnain
Baleanu, Dumitru
论文数: 0引用数: 0
h-index: 0
机构:
Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, LebanonXi An Jiao Tong Univ, Sch Math & Stat, Dept Appl Math, Xian, Peoples R China
Baleanu, Dumitru
Alhazmi, Sharifah E.
论文数: 0引用数: 0
h-index: 0
机构:
Umm Al Qura Univ, Al Qunfudah Univ Coll, Math Dept, Mecca, Saudi ArabiaXi An Jiao Tong Univ, Sch Math & Stat, Dept Appl Math, Xian, Peoples R China