Electron demagnetization and collisionless magnetic reconnection in βe << 1 plasmas -: art. no. 092903

被引:3
|
作者
Scudder, JD [1 ]
Mozer, FS
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52240 USA
[2] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
关键词
D O I
10.1063/1.2046887
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Abrupt, intense electric field enhancements (EFEs) with E>100 mV/m surveyed over 3 years of NASA's Polar spacecraft data are used to illustrate the occurrence and locales of nonguiding center demagnetization of thermal electrons in strongly inhomogeneous electric fields. A lower bound E-*(a) on the perpendicular electric strength sufficient to cause nongyrotropic effects on the electron pressure tensor is determined for EFE thickness Delta x=a rho(e). Minimum E-*(a) occurs when a approximate to 1. Of 258 observed EFEs, 15.3% (39) are demagnetizing (DEFEs) with E >= E-*(1). DEFEs occur within 3x10(-5)<=beta(e)<= 3x10(-1), while EFEs are found as low as beta(e)=10(-8). While E-*(1) does not depend on the ambient density, the DEFEs are organized by the density-dependent inequality lambda(De)/rho(e)< 1 and are consistently understood as sites where the electron pressure tensor could become agyrotropic, enabling collisionless magnetic reconnection. The geophysical locales of the demagnetizing EFEs are not random, always occurring within magnetic cusp invariant latitudes, strongly concentrated at noon magnetic local times and at orbit apogee near the nominal magnetopause. (C) 2005 American Institute of Physics.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Electron acceleration and heating in collisionless magnetic reconnection
    Ricci, P
    Lapenta, G
    Brackbill, JU
    PHYSICS OF PLASMAS, 2003, 10 (09) : 3554 - 3560
  • [32] Electron scale structures in collisionless magnetic reconnection
    Jain, Neeraj
    Sharma, A. Surjalal
    PHYSICS OF PLASMAS, 2009, 16 (05)
  • [33] The Electron Density Depletion in Collisionless Magnetic Reconnection
    赵波
    关立强
    王翠
    郭俊
    延边大学学报(自然科学版), 2009, (02) : 120 - 123
  • [34] The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas
    Karimabadi, H.
    Roytershteyn, V.
    Vu, H. X.
    Omelchenko, Y. A.
    Scudder, J.
    Daughton, W.
    Dimmock, A.
    Nykyri, K.
    Wan, M.
    Sibeck, D.
    Tatineni, M.
    Majumdar, A.
    Loring, B.
    Geveci, B.
    PHYSICS OF PLASMAS, 2014, 21 (06)
  • [35] On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas
    Cazzola, E.
    Curreli, D.
    Markidis, S.
    Lapenta, G.
    PHYSICS OF PLASMAS, 2016, 23 (11)
  • [36] Frozen flux violation, electron demagnetization and magnetic reconnection
    Scudder, J. D.
    Karimabadi, H.
    Daughton, W.
    Roytershteyn, V.
    PHYSICS OF PLASMAS, 2015, 22 (10)
  • [37] Gyrofluid analysis of electron βe effects on collisionless reconnection
    Granier, C.
    Borgogno, D.
    Grasso, D.
    Tassi, E.
    JOURNAL OF PLASMA PHYSICS, 2022, 88 (01)
  • [38] The structure of the electron outflow jet in collisionless magnetic reconnection
    Hesse, Michael
    Zenitani, Seiji
    Klimas, Alex
    PHYSICS OF PLASMAS, 2008, 15 (11)
  • [39] Spontaneous Onset of Collisionless Magnetic Reconnection on an Electron Scale
    Liu, Dongkuan
    Lu, San
    Lu, Quanming
    Ding, Weixing
    Wang, Shui
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 890 (02)
  • [40] Evolution of electron current sheets in collisionless magnetic reconnection
    Jain, Neeraj
    Sharma, A. Surjalal
    PHYSICS OF PLASMAS, 2015, 22 (10)