Evaluating Correctness of Reinforcement Learning based on Actor-Critic Algorithm

被引:0
|
作者
Kim, Youngjae [1 ]
Hussain, Manzoor [1 ]
Suh, Jae-Won [1 ]
Hong, Jang-Eui [1 ]
机构
[1] Chungbuk Natl Univ, Coll Elect & Comp Engn, Cheongju, South Korea
基金
新加坡国家研究基金会;
关键词
reinforcement learning; actor-critic algorithm; safety-critical system; quality evaluation; correctness;
D O I
10.1109/ICUFN55119.2022.9829571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning is used for decision making and functional control in various fields, such as autonomous systems. However, rather than being developed by logical design, deep learning models are trained by itself through learning data. Moreover, only reward values are used to evaluate its performance, which does not provide enough information that the model learned properly. This paper proposes a new method to assess the correctness of reinforcement learning, considering other properties of the learning algorithm. The proposed method is applied for the evaluation of ActorCritic Algorithms, and correctness-related insights of the algorithm are confirmed through experiments.
引用
收藏
页码:320 / 325
页数:6
相关论文
共 50 条
  • [1] A modified actor-critic reinforcement learning algorithm
    Mustapha, SM
    Lachiver, G
    [J]. 2000 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS 1 AND 2: NAVIGATING TO A NEW ERA, 2000, : 605 - 609
  • [2] Actor-Critic based Improper Reinforcement Learning
    Zaki, Mohammadi
    Mohan, Avinash
    Gopalan, Aditya
    Mannor, Shie
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [3] AN ACTOR-CRITIC REINFORCEMENT LEARNING ALGORITHM BASED ON ADAPTIVE RBF NETWORK
    Li, Chun-Gui
    Wang, Meng
    Huang, Zhen-Jin
    Zhang, Zeng-Fang
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 984 - 988
  • [4] Network Congestion Control Algorithm Based on Actor-Critic Reinforcement Learning Model
    Xu, Tao
    Gong, Lina
    Zhang, Wei
    Li, Xuhong
    Wang, Xia
    Pan, Wenwen
    [J]. ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [5] A World Model for Actor-Critic in Reinforcement Learning
    Panov, A. I.
    Ugadiarov, L. A.
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, 2023, 33 (03) : 467 - 477
  • [6] Curious Hierarchical Actor-Critic Reinforcement Learning
    Roeder, Frank
    Eppe, Manfred
    Nguyen, Phuong D. H.
    Wermter, Stefan
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 408 - 419
  • [7] Integrated Actor-Critic for Deep Reinforcement Learning
    Zheng, Jiaohao
    Kurt, Mehmet Necip
    Wang, Xiaodong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 505 - 518
  • [8] A fuzzy Actor-Critic reinforcement learning network
    Wang, Xue-Song
    Cheng, Yu-Hu
    Yi, Jian-Qiang
    [J]. INFORMATION SCIENCES, 2007, 177 (18) : 3764 - 3781
  • [9] A soft actor-critic reinforcement learning algorithm for network intrusion detection
    Li, Zhengfa
    Huang, Chuanhe
    Deng, Shuhua
    Qiu, Wanyu
    Gao, Xieping
    [J]. COMPUTERS & SECURITY, 2023, 135
  • [10] Research on actor-critic reinforcement learning in RoboCup
    Guo, He
    Liu, Tianying
    Wang, Yuxin
    Chen, Feng
    Fan, Jianming
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 205 - 205