A fuzzy Actor-Critic reinforcement learning network

被引:49
|
作者
Wang, Xue-Song [1 ]
Cheng, Yu-Hu
Yi, Jian-Qiang
机构
[1] China Univ Mining & Technol, Sch Informat & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Lab Complex Syst & Intelligence Sci, Beijing 100080, Peoples R China
关键词
reinforcement learning; Actor-Critic learning; fuzzy inference system; radial basis function neural network;
D O I
10.1016/j.ins.2007.03.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the difficulties encountered in the application of reinforcement learning methods to real-world problems is their limited ability to cope with large-scale or continuous spaces. In order to solve the curse of the dimensionality problem, resulting from making continuous state or action spaces discrete, a new fuzzy Actor-Critic reinforcement learning network (FACRLN) based on a fuzzy radial basis function (FRBF) neural network is proposed. The architecture of FACRLN is realized by a four-layer FRBF neural network that is used to approximate both the action value function of the Actor and the state value function of the Critic simultaneously. The Actor and the Critic networks share the input, rule and normalized layers of the FRBF network, which can reduce the demands for storage space from the learning system and avoid repeated computations for the outputs of the rule units. Moreover, the FRBF network is able to adjust its structure and parameters in an adaptive way with a novel self-organizing approach according to the complexity of the task and the progress in learning, which ensures an economic size of the network. Experimental studies concerning a cart-pole balancing control illustrate the performance and applicability of the proposed FACRLN. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:3764 / 3781
页数:18
相关论文
共 50 条
  • [1] A World Model for Actor-Critic in Reinforcement Learning
    Panov, A. I.
    Ugadiarov, L. A.
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, 2023, 33 (03) : 467 - 477
  • [2] Actor-Critic based Improper Reinforcement Learning
    Zaki, Mohammadi
    Mohan, Avinash
    Gopalan, Aditya
    Mannor, Shie
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [3] Curious Hierarchical Actor-Critic Reinforcement Learning
    Roeder, Frank
    Eppe, Manfred
    Nguyen, Phuong D. H.
    Wermter, Stefan
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 408 - 419
  • [4] Integrated Actor-Critic for Deep Reinforcement Learning
    Zheng, Jiaohao
    Kurt, Mehmet Necip
    Wang, Xiaodong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 505 - 518
  • [5] A modified actor-critic reinforcement learning algorithm
    Mustapha, SM
    Lachiver, G
    [J]. 2000 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS 1 AND 2: NAVIGATING TO A NEW ERA, 2000, : 605 - 609
  • [6] An extension of Genetic Network Programming with Reinforcement Learning using actor-critic
    Hatakeyama, Hiroyuki
    Mabu, Shingo
    Hirasawa, Kotaro
    Hu, Jinglu
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1522 - +
  • [7] Bringing Fairness to Actor-Critic Reinforcement Learning for Network Utility Optimization
    Chen, Jingdi
    Wang, Yimeng
    Lan, Tian
    [J]. IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2021), 2021,
  • [8] Research on actor-critic reinforcement learning in RoboCup
    Guo, He
    Liu, Tianying
    Wang, Yuxin
    Chen, Feng
    Fan, Jianming
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 205 - 205
  • [9] AN ACTOR-CRITIC REINFORCEMENT LEARNING ALGORITHM BASED ON ADAPTIVE RBF NETWORK
    Li, Chun-Gui
    Wang, Meng
    Huang, Zhen-Jin
    Zhang, Zeng-Fang
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 984 - 988
  • [10] Multi-actor mechanism for actor-critic reinforcement learning
    Li, Lin
    Li, Yuze
    Wei, Wei
    Zhang, Yujia
    Liang, Jiye
    [J]. INFORMATION SCIENCES, 2023, 647