Tuning of Robust PID Controller with Filter for SISO System Using Evolutionary Algorithms

被引:10
|
作者
Rathinam, Muniraj [1 ]
Maria Siluvairaj, Willjuice Iruthayarajan [1 ]
Ramaveerapathiran, Arun [2 ]
机构
[1] Natl Engn Coll, Dept EEE, Kovilpatti 628503, Tamil Nadu, India
[2] Natl Engn Coll, Dept EIE, Kovilpatti 628503, Tamil Nadu, India
来源
STUDIES IN INFORMATICS AND CONTROL | 2017年 / 26卷 / 03期
关键词
Single Input Single Output (SISO) system; Real coded Genetic Algorithm (RGA); Differential Evolution (DE); Particle Swarm Optimization (PSO); DIFFERENTIAL EVOLUTION; OPTIMIZATION;
D O I
10.24846/v26i3y201703
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the performance comparison of Evolutionary Algorithm techniques with a view to tuning the desired design parameters of robust PID controller with filter. The design parameters of robust PID controller such as proportional gain K-p, integral time constant T-i, derivative time constant T-d and filter time constant t(d)/N for Single Input Single Output (SISO) system are computed using Real coded Genetic Algorithm (RGA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm. The design parameters are optimized using the statistical measures in twenty independent simulation runs. The computed design parameters obtained using Evolutionary Algorithms are used to determine the performance specifications of the Robust PID controller. The performance specifications determined are robustness with respect to model uncertainties and disturbance attenuation, set point tracking, load disturbance rejection and control energy. The test systems used to ascertain the performance specifications are Phase Locked Loop (PLL) system with motor control and Magnetic Levitation system (MLS). For PLL system, the output response obtained using the computed design parameters by RGA algorithm has proved to be better than DE and PSO. For MLS system, the output response obtained using the computed design parameters by DE algorithm has been better than PSO and RGA.
引用
收藏
页码:277 / 286
页数:10
相关论文
共 50 条
  • [1] Multiobjective tuning of robust PID controllers using evolutionary algorithms
    Herrero, J. M.
    Blasco, X.
    Martinez, M.
    Sanchis, J.
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 515 - 524
  • [2] Robust tuning for disturbance rejection of PID controller using evolutionary algorithm
    Kim, DH
    Cho, JH
    [J]. NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2: FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES, 2004, : 248 - 253
  • [3] Evolutionary Algorithms Based Parameters Tuning of PID Controller
    Li Junli
    Mao Jianlin
    Zhang Guanghui
    [J]. 2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 416 - 420
  • [4] Online tuning fuzzy PID controller using robust extended Kalman filter
    Ahn, K. K.
    Truong, D. Q.
    [J]. JOURNAL OF PROCESS CONTROL, 2009, 19 (06) : 1011 - 1023
  • [5] PID controller tuning using evolutionary programming
    Lieslehto, J
    [J]. PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 2828 - 2833
  • [6] Evolutionary Algorithms for PID controller tuning: Current Trends and Perspectives
    Reynoso-Meza, Gilberto
    Sanchis, Javier
    Blasco, Xavier
    Martinez, Miguel
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2013, 10 (03): : 251 - 268
  • [7] Tuning of PID controller based AGC system using genetic algorithms
    Singh, R
    Sen, I
    [J]. TENCON 2004 - 2004 IEEE REGION 10 CONFERENCE, VOLS A-D, PROCEEDINGS: ANALOG AND DIGITAL TECHNIQUES IN ELECTRICAL ENGINEERING, 2004, : C531 - C534
  • [8] Robust PID controller tuning using bilevel optimization
    Cammann, Lucas
    Jaschke, Johannes
    [J]. IFAC PAPERSONLINE, 2024, 58 (07): : 316 - 321
  • [9] PID Controller Tuning Using System Identification
    Houng-Kun, Joung
    Ju, Lee
    [J]. ADVANCED SCIENCE LETTERS, 2016, 22 (11) : 3214 - 3217
  • [10] Evolutionary Tuning Method for PID Controller Parameters of a Cruise Control System Using Metamodeling
    Ab Malek, M. N.
    Ali, M. S. Mohamed
    [J]. MODELLING AND SIMULATION IN ENGINEERING, 2009, 2009