Equilibrium strain-energy analysis of coherently strained core-shell nanowires

被引:61
|
作者
Trammell, Thomas E. [1 ]
Zhang, Xi [1 ]
Li, Yulan [1 ]
Chen, Long-Qing [1 ]
Dickey, Elizabeth C. [1 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, Mat Res Inst, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
stresses; solid phase epitaxial; semiconductor materials; field effect transistors;
D O I
10.1016/j.jcrysgro.2008.02.037
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In order to continue the performance enhancement of Si-based semiconductor devices, the number of devices on a chip as well as the performance of those devices must continue to improve. One method for improving device functionality is the incorporation of strained Si-Ge heterostructures. While such heterostructures have been the focus of much research in planar Si processing, only recently has the fabrication of such heterostructures in nanoscale semiconductors been addressed. In particular, the fabrication of a Si-Ge radial nanowire heterostructure requires a consideration of the epitaxial stability of the shell on the underlying core nanowire. This work develops a model for the strain state of a radial nanowire heterostructure, focusing on the particular example of Si-Ge. The behavior of the radial nanowire heterostructure is compared to that of a planar heterostructure, and we find that much higher strains can be achieved in the nanowire geometry. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3084 / 3092
页数:9
相关论文
共 50 条
  • [31] The growth and radial analysis of Si/Ge core-shell nanowires
    Chang, Hsu-Kai
    Lee, Si-Chen
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (25)
  • [32] Optical and structural analysis of ZnS core-shell type nanowires
    Ramos, J. R.
    Morales, C.
    Garcia, G.
    Diaz, T.
    Rosendo, E.
    Santoyo, J.
    Oliva, A. I.
    Galeazzi, R.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 736 : 93 - 98
  • [33] Mapping of Strain Fields in GaAs/GaAsP Core-Shell Nanowires with Nanometer Resolution
    Jones, Eric J.
    Ermez, Sema
    Gradecak, Silvija
    [J]. NANO LETTERS, 2015, 15 (12) : 7873 - 7879
  • [34] Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires
    Rieger, Torsten
    Zellekens, Patrick
    Demarina, Natalia
    Al Hassan, Ali
    Hackemueller, Franz Josef
    Lueth, Hans
    Pietsch, Ullrich
    Schaepers, Thomas
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    [J]. NANOSCALE, 2017, 9 (46) : 18392 - 18401
  • [35] Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires
    Hocevar, Moira
    Le Thuy Thanh Giang
    Songmuang, Rudeesun
    den Hertog, Martien
    Besombes, Lucien
    Bleuse, Joel
    Niquet, Yann-Michel
    Pelekanos, Nikos T.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (19)
  • [36] Raman scattering characterization of strain in Ge-Si core-shell nanowires
    Singh, Rachna
    Poweleit, C. D.
    Dailey, Eric
    Drucker, Jeff
    Menendez, Jose
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (08)
  • [37] Relativistic electron energy loss spectroscopy of solid and core-shell nanowires
    Hyun, J. K.
    Levendorf, M. P.
    Blood-Forsythe, M.
    Park, J.
    Muller, D. A.
    [J]. PHYSICAL REVIEW B, 2010, 81 (16)
  • [38] STRAIN-ENERGY EXPRESSIONS IN NONLINEAR SHELL ANALYSES
    BRUSH, DO
    [J]. JOURNAL OF THE AEROSPACE SCIENCES, 1960, 27 (07): : 555 - 556
  • [39] Direct Measure of Strain and Electronic Structure in GaAs/GaP Core-Shell Nanowires
    Jackson, H. E.
    Montazeri, M.
    Fickenscher, M.
    Smith, L. M.
    Yarrison-Rice, J. M.
    Kang, J. H.
    Gao, Q.
    Tan, H. H.
    Jagadish, C.
    Guo, Y.
    Zou, J.
    Pistol, M. E.
    Pryor, C. E.
    [J]. PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399
  • [40] Strain engineering of core-shell silicon carbide nanowires for mechanical and piezoresistive characterizations
    Nakata, Shinya
    Uesugi, Akio
    Sugano, Koji
    Rossi, Francesca
    Salviati, Giancarlo
    Lugstein, Alois
    Isono, Yoshitada
    [J]. NANOTECHNOLOGY, 2019, 30 (26)