Large-sample theory for parametric multiple imputation procedures

被引:122
|
作者
Wang, N [1 ]
Robins, JM
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
asymptotic distribution; EM algorithm; loglikelihood score; measurement error model; missing data;
D O I
10.1093/biomet/85.4.935
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the asymptotic behaviour of various parametric multiple imputation procedures which include but are not restricted to the 'proper' imputation procedures proposed by Rubin (1978). The asymptotic variance structure of the resulting estimators is provided. This result is used to compare the relative efficiencies of different imputation procedures. It also provides a basis to understand the behaviour of two Monte Carlo iterative estimators, stochastic EM (Celeux & Diebolt, 1985; Wei & Tanner; 1990) and simulated EM (Ruud, 1991). We further develop properties of these estimators when they stop at iteration K with imputation size m. An application to a measurement error problem is used to illustrate the results.
引用
收藏
页码:935 / 948
页数:14
相关论文
共 50 条