UNCERTAINTY IN DATA-DRIVEN KALMAN FILTERING FOR PARTIALLY KNOWN STATE-SPACE MODELS

被引:6
|
作者
Klein, Itzik [1 ]
Revach, Guy [2 ]
Shlezinger, Nir [3 ]
Mehr, Jonas E. [2 ]
van Sloun, Ruud J. G. [4 ,5 ]
Eldar, Yonina C. [6 ]
机构
[1] Univ Haifa, Hatter Dept Marine Technol, Haifa, Israel
[2] Swiss Fed Inst Technol, Inst Signal & Informat Proc ISI, DITET, Zurich, Switzerland
[3] Ben Gurion Univ Negev, Sch ECE, Beer Sheva, Israel
[4] Eindhoven Univ Technol, EE Dept, Eindhoven, Netherlands
[5] Phillips Res, Eindhoven, Netherlands
[6] Weizmann Inst Sci, Fac Math & CS, Rehovot, Israel
关键词
Kalman filter; deep learning; uncertainty;
D O I
10.1109/ICASSP43922.2022.9746732
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Providing a metric of uncertainty alongside a state estimate is often crucial when tracking a dynamical system. Classic state estimators, such as the Kalman filter (KF), provide a time-dependent uncertainty measure from knowledge of the underlying statistics; however, deep learning based tracking systems struggle to reliably characterize uncertainty. In this paper, we investigate the ability of KalmanNet, a recently proposed; hybrid; model-based; deep state tracking algorithm, to estimate an uncertainty measure. By exploiting the interpretable nature of KalmanNet, we show that the error covariance matrix can be computed based on its internal features, as an uncertainty measure. We demonstrate that when the system dynamics are known, KalmanNet-which learns its mapping from data without access to the statistics-provides uncertainty similar to that provided by the KF; and while in the presence of evolution model-mismatch, KalmanNet provides a more accurate error estimation.
引用
收藏
页码:3194 / 3198
页数:5
相关论文
共 50 条
  • [21] Localizing, Forgetting, and Likelihood Filtering in State-Space Models
    Loeliger, Hans-Andrea
    Bolliger, Lukas
    Reller, Christoph
    Korl, Sascha
    [J]. 2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2009, : 181 - +
  • [22] Adaptive kernels in approximate filtering of state-space models
    Dedecius, Kamil
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (06) : 938 - 952
  • [23] Fast Kalman-Like Filtering for Large-Dimensional Linear and Gaussian State-Space Models
    Ait-El-Fquih, Boujemaa
    Hoteit, Ibrahim
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (21) : 5853 - 5867
  • [24] A state-space model to control an adaptive facade prototype using data-driven techniques
    Jumabekova, Ainagul
    Berger, Julien
    Hubert, Tessa
    Dugue, Antoine
    Wu, Tingting Vogt
    Recht, Thomas
    Inard, Christian
    [J]. ENERGY AND BUILDINGS, 2023, 296
  • [25] State-Space Filtering with Respect to Data Imprecision and Fuzziness
    Neumann, I.
    Kutterer, H.
    [J]. 1ST INTERNATIONAL WORKSHOP ON THE QUALITY OF GEODETIC OBSERVATION AND MONITORING SYSTEMS (QUGOMS'11), 2015, 140 : 87 - 94
  • [26] Deriving Mechanical Structures in Physical Coordinates from Data-Driven State-Space Realizations
    dos Santos, P. Lopes
    Ramos, J. A.
    Azevedo-Perdicoulis, T-P
    de Carvallio, J. L. Marlins
    [J]. 2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 1107 - 1112
  • [27] A data-driven nonlinear state-space model of the unsteady lift force on a pitching wing
    Siddiqui, M. F.
    Troyer, T. De
    Decuyper, J.
    Csurcsia, P. Z.
    Schoukens, J.
    Runacres, M. C.
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2022, 114
  • [28] Data-driven State-space Modeling of Indoor Thermal Sensation Using Occupant Feedback
    Chen, Xiao
    Wang, Qian
    Srebric, Jelena
    Fadeyi, Moshood O.
    [J]. 2014 AMERICAN CONTROL CONFERENCE (ACC), 2014,
  • [29] On Filtering and Smoothing Algorithms for Linear State-Space Models Having Quantized Output Data
    Cedeno, Angel L.
    Gonzalez, Rodrigo A.
    Godoy, Boris I.
    Carvajal, Rodrigo
    Aguero, Juan C.
    [J]. MATHEMATICS, 2023, 11 (06)
  • [30] Data-Driven Reachability Analysis for Gaussian Process State Space Models
    Griffioen, Paul
    Arcak, Murat
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4100 - 4105