The effect of downward continuation of gravity anomaly to sea level in Stokes' formula

被引:14
|
作者
Sjöberg, LE [1 ]
机构
[1] Royal Inst Technol, Div Geodesy, S-10044 Stockholm, Sweden
关键词
analytical continuation; geoid; height anomaly; topographic effects; Stokes' formula;
D O I
10.1007/s001900000143
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Stokes' well-known formula integrates gravity anomalies on a sphere to geoidal undulations. Traditionally the effect of continuing the observed gravity anomaly from the Earth's surface to sea level is estimated in a rather rough manner, which significantly degrades the resulting geoidal undulations. In addition, the derived fictitious gravity anomalies at sea level are numerically unstable. This problem is solved by directly deriving a surface integral for the effects on the geoidal undulation and height anomaly. In addition, the solution is stabilized by optimized spectral smoothing by minimizing the mean square error. The final formula is a function of the gravity anomaly, height anomaly and topographic height.
引用
收藏
页码:796 / 804
页数:9
相关论文
共 50 条
  • [31] Characterization and stabilization of the downward continuation problem for airborne gravity data
    X. Li
    J. Huang
    R. Klees
    R. Forsberg
    M. Willberg
    D. C. Slobbe
    C. Hwang
    R. Pail
    Journal of Geodesy, 2022, 96
  • [32] Downward continuation of gravity signals based on the multiscale edge constraint
    Ning, JS
    Wang, HH
    Luo, ZC
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2005, 48 (01): : 63 - 68
  • [33] The Stokes formula in the theory of gravity.
    Garcia, G
    Rosenblatt, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1938, 207 : 969 - 970
  • [34] ON DERIVATIONS AND PROPERTIES OF STOKES GRAVITY FORMULA
    DEWITTE, L
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1966, 11 (04): : 453 - &
  • [35] On estimation of stopping criteria for iterative solutions of gravity downward continuation
    Goli, Mehdi
    Foroughi, Ismael
    Novak, Pavel
    CANADIAN JOURNAL OF EARTH SCIENCES, 2018, 55 (04) : 397 - 405
  • [36] Upward/downward continuation of gravity gradients for precise geoid determination
    Tóth Gy.
    Földvári L.
    Tziavos I.N.
    Ádám J.
    Acta Geod. Geophys. Hung., 2006, 1 (21-30): : 21 - 30
  • [37] A comparison of different downward continuation methods for airborne gravity data
    Wang, XT
    Xia, ZR
    Shi, P
    Sun, ZM
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2004, 47 (06): : 1017 - 1022
  • [38] Determination of gravity anomaly at sea level from inversion of satellite gravity gradiometric data
    Eshagh, Mehdi
    Sjoberg, Lars E.
    JOURNAL OF GEODYNAMICS, 2011, 51 (05) : 366 - 377
  • [39] A new formula for the course of gravity at sea level near the mainland.
    Helmert, FR
    SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN, 1915, : 676 - 685
  • [40] Taylor iteration downward continuation method for gravity gradient tensor data
    Shuiliang Tang
    Danian Huang
    Acta Geodaetica et Geophysica, 2016, 51 : 435 - 449