A low power and high gain CMOS LNA for UWB applications in 90 nm CMOS process

被引:16
|
作者
Pandey, Sunil [1 ]
Singh, Jawar [1 ]
机构
[1] PDPM Indian Inst Informat Technol Design & Mfg Ja, Jabalpur, Madhya Pradesh, India
关键词
Common gate (CG); CMOS; Low noise amplifier (LNA); Ultra wide band (UWB); LOW-NOISE AMPLIFIER; WIRELESS APPLICATIONS; COMMON-GATE; GROUP-DELAY; DESIGN;
D O I
10.1016/j.mejo.2015.01.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a two stage low noise amplifier (LNA) to achieve low power and high gain for 3.1-10.6 GHz ultra-wide band (UWB) applications. Its first stage yields exceptionally wideband input matching because of the input impedance Z(in) = 1/g(m1) approximate to 50 Omega of the common-gate (CG) input matching transistor. A source degenerated common source (CS) topology with the shunt peaking inductor L-d2 is designed as the second stage to improve the overall gain response. Using a standard 90 nm CMOS process, the proposed LNA achieves a gain S-21 approximately equal to 20 dB, while consuming only 4.33 mW power from a 0.6 V supply voltage. With the aid of source degenerated inductor, the simulation results show input return loss S-11 < -10 dB in the frequency range of 3.1-9.7 GHz, a noise figure (NF) less than 1.41 dB, and the minimum noise figure (NFmin) below 1.034 dB in the frequency range of 3.1-10.6 GHz. When a two tone test is performed with a frequency spacing of 2 MHz, the third order input intercept point (IIP3) of -22 dBm is achieved. The other advantages of the proposed LNA are its small group-delay variation and gain variation of +/- 28 ps and +/- 0.39 dB, respectively. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:390 / 397
页数:8
相关论文
共 50 条
  • [41] Low power programmable-gain CMOS distributed LNA for ultra-wideband applications
    Zhang, F
    Kinget, P
    [J]. 2005 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, 2005, : 78 - 81
  • [42] Low Voltage LNA Implementations in 90 nm CMOS Technology for Multistandard GNSS
    Gradzki, Jacek
    Borejko, Tomasz
    Pleskacz, Witold A.
    [J]. PROCEEDINGS OF THE 2009 IEEE SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS AND SYSTEMS, 2009, : 78 - 83
  • [43] An Ultra-Low Power CMOS LNA for WPAN Applications
    Liu, Hang-Ji
    Zhang, Zhao-Feng
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (02) : 174 - 176
  • [44] Design of Low Power UWB CMOS LNA Based on Common Source Inductor
    Hsu, Meng-Ting
    Hsieh, Yu-Chang
    Huang, Wei-Lun
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 1026 - 1029
  • [45] A Low-Power Low-Noise W-band LNA in 90-nm CMOS Process with Source Degeneration Technique
    Huang P.-H.
    Chiu C.-S.
    Huang G.-W.
    Chen K.-M.
    Wu L.-K.
    [J]. IEEE Microwave and Wireless Technology Letters, 2024, 34 (01): : 69 - 71
  • [46] A Low Power, High Dynamic Range LNA for Filterless RF Receiver Front-Ends in 90-nm CMOS
    Werth, Tobias D.
    Bormann, Dirk
    Kaehlert, Stefan
    Liao, Lei
    Wunderlich, Ralf
    Heinen, Stefan
    [J]. 2010 ASIA-PACIFIC MICROWAVE CONFERENCE, 2010, : 350 - 353
  • [47] A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS
    Pellerano, Stefano
    Palaskas, Yorgos
    Soumyanath, Krishnamurthy
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (07) : 1542 - 1552
  • [48] PA AND LNA FOR MILLIMETER-WAVE WPAN USING 90 nm CMOS PROCESS
    Kang, Min-Soo
    Kim, Bong-Su
    Byun, Woo-Jin
    Kim, Kwang-Seon
    Oh, Seung-Hyeub
    Pinel, Stephane
    Laskar, Joy
    Song, Myung-Sun
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2009, 51 (09) : 2029 - 2032
  • [49] HIGH LINEARITY AND LOW POWER CASCODE CMOS LNA FOR RF FRONT END APPLICATIONS
    Hansal, Malti
    Srivastava, Gaurav
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 983 - 986
  • [50] A Clock Gated Flip-Flop for Low Power Applications in 90 nm CMOS
    Shaker, Mohamed O.
    Bayoumi, Magdy A.
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 558 - 562