True random numbers from amplified quantum vacuum

被引:126
|
作者
Jofre, M. [1 ]
Curty, M. [2 ]
Steinlechner, F. [1 ]
Anzolin, G. [1 ]
Torres, J. P. [1 ,3 ]
Mitchell, M. W. [1 ]
Pruneri, V. [1 ,4 ]
机构
[1] ICFO Inst Ciencies Foton, E-08860 Barcelona, Spain
[2] Univ Vigo, Dept Signal Theory & Commun, ETSI Telecomunicac, E-36310 Vigo, Spain
[3] Univ Politecn Cataluna, Dept Signal Theory & Commun, E-08034 Barcelona, Spain
[4] ICREA Inst Catalana Rec & Estudis Avancats, E-08010 Barcelona, Spain
来源
OPTICS EXPRESS | 2011年 / 19卷 / 21期
关键词
GENERATOR;
D O I
10.1364/OE.19.020665
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices. (C) 2011 Optical Society of America
引用
收藏
页码:20665 / 20672
页数:8
相关论文
共 50 条
  • [31] THE TRUE VACUUM AND THE DRESSED PARTICLES IN QUANTUM FIELD THEORY
    ZUMINO, B
    [J]. PHYSICAL REVIEW, 1953, 91 (02): : 478 - 478
  • [32] From Random Numbers to Random Objects
    Zolfaghari, Behrouz
    Bibak, Khodakhast
    Koshiba, Takeshi
    [J]. ENTROPY, 2022, 24 (07)
  • [33] Astronomical random numbers for quantum foundations experiments
    Leung, Calvin
    Brown, Amy
    Hien Nguyen
    Friedman, Andrew S.
    Kaiser, David I.
    Gallicchio, Jason
    [J]. PHYSICAL REVIEW A, 2018, 97 (04)
  • [34] Generation of Truly Random Numbers on a Quantum Annealer
    Bhatia, Harshil
    Tretschk, Edith
    Theobalt, Christian
    Golyanik, Vladislav
    [J]. IEEE ACCESS, 2022, 10 : 112832 - 112844
  • [35] Estimating the privacy of quantum-random numbers
    Seiler, Johannes
    Strohm, Thomas
    Schleich, Wolfgang P.
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (09):
  • [36] INDUCED VACUUM QUANTUM NUMBERS IN 2 + 1 DIMENSIONS
    POLYCHRONAKOS, AP
    [J]. NUCLEAR PHYSICS B, 1986, 278 (01) : 207 - 224
  • [37] Laser technology generates bias-free, true random numbers
    Guo, Hong
    [J]. LASER FOCUS WORLD, 2009, 45 (08): : 13 - 13
  • [38] Method to Generate True Random Numbers in HDD without Additional Hardware
    Liu, Xiong
    Uy, Vincent
    Xie, WenXiang
    [J]. PROCEEDINGS OF THE 2013 IEEE 8TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2013, : 1496 - 1500
  • [39] Random numbers and random matrices: Quantum chaos meets number theory
    Timberlake, Todd
    [J]. AMERICAN JOURNAL OF PHYSICS, 2006, 74 (06) : 547 - 553
  • [40] Amplified spontaneous emission based quantum random number generator
    Marosits, Adam
    Schranz, Agoston
    Udvary, Eszter
    [J]. INFOCOMMUNICATIONS JOURNAL, 2020, 12 (02): : 12 - 17