A new spatio-temporal background-foreground bimodal for motion segmentation and detection in urban traffic scenes

被引:7
|
作者
Al-Smadi, Ma'moun [1 ]
Abdulrahim, Khairi [2 ]
Seman, Kamaruzzaman [2 ]
Salam, Rosalina Abdul [1 ]
机构
[1] Univ Sains Islam Malaysia USIM, Fac Sci & Technol, Nilai 71800, Negeri Sembilan, Malaysia
[2] Univ Sains Islam Malaysia USIM, Fac Engn & Built Environm, Nilai 71800, Negeri Sembilan, Malaysia
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 13期
关键词
Motion segmentation; Background subtraction; Cumulative frame differencing; Sigma-delta filter; Vehicle detection; VEHICLE DETECTION; SUBTRACTION; ALGORITHM; TRACKING; SYSTEM; MODEL;
D O I
10.1007/s00521-019-04458-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic vehicle detection in urban traffic surveillance is an important and urgent issue, since it provides necessary information for further processing. Conventional techniques utilize either motion segmentation or appearance-based detection, which involves either poor adaptation or high computation. The complexity of urban traffic scenarios lies in slow motion temporarily stopped or parked vehicles, dynamic background, and sudden illumination variations. In this paper, a new motion segmentation technique is proposed based on spatio-temporal background-foreground bimodal. The temporal background information is modeled using a weighted sigma-delta estimation, cumulative frame differencing is used to model the foreground pixels, and the spatial correlation between neighboring pixels is utilized to combine both background and foreground models. The median of consecutive frame difference adapts sudden illumination variation, update background model, and reinitialize foreground model. Comparative experimental results for typical urban traffic sequences show that the proposed technique achieves robust and accurate segmentation, which improves adaptation, reduce false detection, and satisfy real-time requirements.
引用
收藏
页码:9453 / 9469
页数:17
相关论文
共 50 条
  • [1] A new spatio-temporal background–foreground bimodal for motion segmentation and detection in urban traffic scenes
    Ma’moun Al-Smadi
    Khairi Abdulrahim
    Kamaruzzaman Seman
    Rosalina Abdul Salam
    [J]. Neural Computing and Applications, 2020, 32 : 9453 - 9469
  • [2] Background-foreground segmentation based on dominant motion estimation and static segmentation
    Huang, Y
    Paulus, D
    Niemann, H
    [J]. IWISPA 2000: PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2000, : 69 - 74
  • [3] Background-foreground interaction for moving object detection in dynamic scenes
    Chen, Zhe
    Wang, Ruili
    Zhang, Zhen
    Wang, Huibin
    Xu, Lizhong
    [J]. INFORMATION SCIENCES, 2019, 483 : 65 - 81
  • [4] Spatio-temporal motion-based foreground segmentation and shadow suppression
    Guan, Y. -P.
    [J]. IET COMPUTER VISION, 2010, 4 (01) : 50 - 60
  • [5] Spatio-temporal motion-based foreground segmentation and shadow suppression
    Guan, Y.-P.
    [J]. IET Computers and Digital Techniques, 2009, 4 (01): : 50 - 60
  • [6] Spatio-Temporal Optimization for Foreground/Backgroud Segmentation
    Feldmann, Tobias
    [J]. COMPUTER VISION - ACCV 2010 WORKSHOPS, PT I, 2011, 6468 : 113 - 122
  • [7] A new depth cue based algorithm for background-foreground segmentation
    Sengupta, K
    DeSilva, LC
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1305 - 1314
  • [8] An adaptive background modeling for foreground detection using spatio-temporal features
    Mohanty, Subrata Kumar
    Rup, Suvendu
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (01) : 1311 - 1341
  • [9] An adaptive background modeling for foreground detection using spatio-temporal features
    Subrata Kumar Mohanty
    Suvendu Rup
    [J]. Multimedia Tools and Applications, 2021, 80 : 1311 - 1341
  • [10] A MULTISCALE SPATIO-TEMPORAL BACKGROUND MODEL FOR MOTION DETECTION
    Lu, Xiqun
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3268 - 3271