On Estimation of Hurst Parameter Under Noisy Observations

被引:8
|
作者
Liu, Guangying [1 ]
Jing, Bing-Yi [2 ]
机构
[1] Nanjing Audit Univ, Dept Stat, Nanjing, Jiangsu, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
关键词
Central limit theorem; Fractional Brownian motion; High-frequency data; Noisy data; Realized power variation; LONG-RANGE DEPENDENCE; MICROSTRUCTURE NOISE; SEMIPARAMETRIC ESTIMATION; STOCHASTIC VOLATILITY; MEMORY; FREQUENCY; ARBITRAGE;
D O I
10.1080/07350015.2016.1191503
中图分类号
F [经济];
学科分类号
02 ;
摘要
It is widely accepted that some financial data exhibit long memory or long dependence, and that the observed data usually possess noise. In the continuous time situation, the factional Brownian motion B-H and its extension are an important class of models to characterize the long memory or short memory of data, and Hurst parameter H is an index to describe the degree of dependence. In this article, we estimate the Hurst parameter of a discretely sampled fractional integral process corrupted by noise. We use the preaverage method to diminish the impact of noise, employ the filter method to exclude the strong dependence, and obtain the smoothed data, and estimate the Hurst parameter by the smoothed data. The asymptotic properties such as consistency and asymptotic normality of the estimator are established. Simulations for evaluating the performance of the estimator are conducted. Supplementary materials for this article are available online.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 50 条
  • [1] Estimation of the Hurst parameter from continuous noisy data
    Chigansky, Pavel
    Kleptsyna, Marina
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2343 - 2385
  • [2] Estimation of the Hurst parameter from discrete noisy data
    Gloter, Arnaud
    Hoffmann, Marc
    [J]. ANNALS OF STATISTICS, 2007, 35 (05): : 1947 - 1974
  • [3] A METHOD FOR PARAMETER-ESTIMATION OF A CLASS OF NONLINEAR DISTRIBUTED SYSTEMS UNDER NOISY OBSERVATIONS
    SUNAHARA, Y
    AIHARA, S
    KOJIMA, F
    [J]. AUTOMATICA, 1986, 22 (06) : 727 - 732
  • [4] Parameter estimation of systems described by the relation with noisy observations
    Swiatek, Jerzy
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2007, 13 (02) : 199 - 208
  • [5] Parameter estimation of a convolutional encoder from noisy observations
    Dingel, Janis
    Hagenauer, Joachim
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1776 - 1780
  • [6] Parameter estimation by contrast minimization for noisy observations of a diffusion process
    Favetto, Benjamin
    [J]. STATISTICS, 2014, 48 (06) : 1344 - 1370
  • [7] An algorithm for ARMA model parameter estimation from noisy observations
    Fattah, S. A.
    Zhu, W. -P.
    Ahmad, M. O.
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 3202 - 3205
  • [8] Adaptive parameter estimation of autoregressive signals from noisy observations
    Zheng, WX
    [J]. ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 449 - 452
  • [9] Estimation of the Hurst Parameter in Spot Volatility
    Li, Yicun
    Teng, Yuanyang
    [J]. MATHEMATICS, 2022, 10 (10)
  • [10] MAP and MMSE Based Parameter Estimation from Noisy Radar Observations
    Haefner, Stephan
    Thomae, Reiner
    [J]. PROCEEDINGS OF THE 2020 GERMAN MICROWAVE CONFERENCE (GEMIC), 2020, : 260 - 263