DNA topoisomerase II (topo II) is thought to be a nuclear enzyme; during interphase most was insoluble and could be recovered in the pellet after centrifugation of cell homogenates at 10,000 g (P-10). Upon entry into mitosis, the majority of topo II did not associate,vith condensed chromosomes but was apparently solubilized and redistributed throughout the cell. Although two nonchromosomal subfractions of mitotic topo II were defined by centrifugation at 130,000 g, the vast majority (greater than or equal to 90%) was recovered in the pellet (P-130). In vivo nucleic acid interactions with topo II were monitored by a recently developed approach of UV-photo-crosslinking, immunoprecipitation and P-32-labeling. P-10 (interphase) topo II was largely associated with DNA. P-130 (mitotic non-chromosomal) topo II was primarily associated with RNA. These nucleic acid interactions with both interphase and mitotic topo II occurred through the catalytically inert and as yet, poorly understood C-terminal domain of the protein. P-10 topo II was highly active enzymatically. Activity, measured by the ability of topo II to decatenate kDNA minicircles, was reduced by treatment with phosphatase. In contrast, P-130 topo II was relatively inactive but activity could be increased by phosphatase treatment. In vivo, P-130 topo II was more heavily phosphorylated than P-10 topo II; in both, only the C-terminal domain of topo II was detectably modified. Our observations suggest that cell cycle-dependent changes in the distribution, nucleic acid interactions and enzymatic activity of topo II are regulated, at least in part, by phosphorylation/dephosphorylation.