Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings

被引:70
|
作者
Jia, Jinping
Fu, Junjie
Zheng, Jun
Zhou, Xin
Huai, Junling
Wang, Jianhua
Wang, Meng
Zhang, Ying
Chen, Xiaoping
Zhang, Jinpeng
Zhao, Jinfeng
Su, Zhen
Lv, Yuping
Wang, Guoying [1 ]
机构
[1] State Key Lab Agrobiotechnol, Beijing, Peoples R China
[2] Natl Ctr Maize Improvement, Beijing, Peoples R China
[3] Dept Seed Sci, Beijing, Peoples R China
[4] China Agr Univ, State Key Lab Plant Physiol & Biochem, Beijing 100094, Peoples R China
[5] Chinese Acad Agr Sci, Inst Crop Sci, Beijing 100081, Peoples R China
来源
PLANT JOURNAL | 2006年 / 48卷 / 05期
关键词
maize; full-length cDNA; osmotic stress; gene expression; macroarray;
D O I
10.1111/j.1365-313X.2006.02905.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from maize (Zea mays L.) remains limited. Here we report the construction of a full-length enriched cDNA library from osmotically stressed maize seedlings by using the modified CAP trapper method. From this library, 2073 full-length cDNAs (accession numbers DQ244142-DQ246214) were collected and further analyzed by sequencing from both the 5'- and 3'-ends. A total of 1728 (83.4%) sequences did not match known maize mRNA and full-length cDNA sequences in the GenBank database and represent new full-length genes. After alignment of the 2073 full-length cDNAs with 448 maize BAC sequences, it was found that 84 full-length cDNAs could be mapped to the BACs. Of these, 43 genes (51.2%) have been correctly annotated from the BAC clones, 37 genes (44.0%) have been annotated with a different exon-intron structure from our cDNA, and four genes (4.76%) had no annotations in the TIGR database. Expression analysis of 2073 full-length maize cDNAs using a cDNA macroarray led to the identification of 79 genes upregulated by stress treatments and 329 downregulated genes. Of the 79 stress-inducible genes, 30 genes contain ABRE, DRE, MYB, MYC core sequences or other abiotic-responsive cis-acting elements in their promoters. These results suggest that these cis-acting elements and the corresponding transcription factors take part in plant responses to osmotic stress either cooperatively or independently. Additionally, the data suggest that an ethylene signaling pathway may be involved in the maize response to drought stress.
引用
收藏
页码:710 / 727
页数:18
相关论文
共 50 条
  • [31] FOLIAR APPLICATION OF MANNITOL AS AN EFFECTIVE APPROACH TO AMELIORATE THE SALT STRESS-INDUCED TOXICITY IN TWO VARIETIES OF MAIZE (ZEA MAYS L.)
    Afzal, Mehreen
    Nawaz, Khalid
    Hussain, Khalid
    Iqbal, Iqra
    Riaz, Huma
    Rouf, Zainab Abdul
    Javeria, Mehreen
    Akram, Rida
    Khaliq, Maida
    Attique, Ayesha
    Zainab, Rida
    PAKISTAN JOURNAL OF BOTANY, 2023, 55 (02) : 459 - 467
  • [32] Influence of Arsenic Stress on Physiological, Biochemical, and Morphological Characteristics in Seedlings of Two Cultivars of Maize (Zea mays L.)
    Du, Liyu
    Xia, Xindi
    Lan, Xiping
    Liu, Miao
    Zhao, Liyang
    Zhang, Pan
    Wu, Yan
    WATER AIR AND SOIL POLLUTION, 2017, 228 (02):
  • [33] Effects of exogenous melatonin on growth and photosynthesis of maize (Zea mays L.) seedlings under low nitrogen stress
    Lv, Xiangyue
    Zhang, Qing
    He, Jihang
    Yang, Yi
    Xia, Zhenqing
    Gong, Yuxiang
    Liu, Jianchao
    Lu, Haidong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 223
  • [34] THE PROMOTIVE ROLE OF ALGAL BIOFERTILIZER ON THE GROWTH OF MAIZE (Zea mays L.) SEEDLINGS UNDER CADMIUM-STRESS
    Abou-Zeid, Hanan M.
    JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES, 2014, 2 : 256 - 264
  • [35] EFFECTS OF EXOGENOUS NITRIC OXIDE ON GLYCINEBETAINE METABOLISM IN MAIZE (ZEA MAYS L.) SEEDLINGS UNDER DROUGHT STRESS
    Zhang, Lixin
    Zhao, Yonggui
    Zhai, Youya
    Gao, Mei
    Zhang, Xifeng
    Wang, Kai
    Nan, Weige
    Liu, Jianchao
    PAKISTAN JOURNAL OF BOTANY, 2012, 44 (06) : 1837 - 1844
  • [36] Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress
    Sun, Yujun
    He, Yunhan
    Irfan, Ali Raza
    Liu, Xinmeng
    Yu, Qiaoqiao
    Zhang, Qian
    Yang, Deguang
    AGRONOMY-BASEL, 2020, 10 (04):
  • [37] Analysis of gamma radiation-induced chromosome variations in maize (Zea mays L.)
    Viccini, LF
    De Carvalho, CR
    CARYOLOGIA, 2001, 54 (04) : 319 - 327
  • [38] Bacillus pumilus induced tolerance of Maize (Zea mays L.) against Cadmium (Cd) stress
    Asim Shahzad
    Mingzhou Qin
    Mahmood Elahie
    Muhammad Naeem
    Tasmia Bashir
    Humaira Yasmin
    Muhammad Younas
    Ahsan Areeb
    Muhammad Irfan
    Motsim Billah
    Abdul Shakoor
    Saman Zulfiqar
    Scientific Reports, 11
  • [39] Bacillus pumilus induced tolerance of Maize (Zea mays L.) against Cadmium (Cd) stress
    Shahzad, Asim
    Qin, Mingzhou
    Elahie, Mahmood
    Naeem, Muhammad
    Bashir, Tasmia
    Yasmin, Humaira
    Younas, Muhammad
    Areeb, Ahsan
    Irfan, Muhammad
    Billah, Motsim
    Shakoor, Abdul
    Zulfiqar, Saman
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] GWAS and RNA-seq analysis uncover candidate genes associated with alkaline stress tolerance in maize ( Zea mays L.) seedlings
    Li, Chunxiang
    Jia, Yue
    Zhou, Runyu
    Liu, Liwei
    Cao, Mengna
    Zhou, Yu
    Wang, Zhenhua
    Di, Hong
    FRONTIERS IN PLANT SCIENCE, 2022, 13