Gallium Oxide for High-Power Optical Applications

被引:39
|
作者
Deng, Huiyang [1 ]
Leedle, Kenneth J. [1 ]
Miao, Yu [1 ]
Black, Dylan S. [1 ]
Urbanek, Karel E. [2 ]
McNeur, Joshua [3 ]
Kozak, Martin [3 ]
Ceballos, Andrew [1 ]
Hommelhoff, Peter [3 ]
Solgaard, Olav [1 ]
Byer, Robert L. [2 ]
Harris, James S. [1 ,2 ,4 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany
[4] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
来源
ADVANCED OPTICAL MATERIALS | 2020年 / 8卷 / 07期
关键词
dielectric laser accelerator; gallium oxide; high-power optical systems; lasers; nanostructures; optical materials; ACCELERATION; ELECTRONS;
D O I
10.1002/adom.201901522
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gallium oxide (Ga2O3) is an emerging wide-bandgap transparent conductive oxide (TCO) with potential applications for high-power optical systems. Herein, Ga2O3 fabricated nanostructures are described, which demonstrate high-power laser induced damage threshold (LIDT). Furthermore, the demonstration of an electron accelerator based on Ga2O3 gratings is reported. These unique Ga2O3 nanostructures provide acceleration gradients exceeding those possible with conventional RF accelerators due to the high breakdown threshold of Ga2O3. In addition, the laser damage threshold and acceleration performance of a Ga2O3-based dielectric laser accelerator (DLA) are compared with those of a DLA based on sapphire, a material known for its high breakdown strength. Finally, the potential of Ga2O3 thin-film coatings as field reduction layers for Si nanostructures is shown; they potentially improve the effective LIDT and performance of Si-based DLAs and other high-power optical structures. These results could provide a foundation for new high-power optical applications with Ga2O3.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Lithium accumulator for high-power applications
    Berger, T
    Dreher, J
    Krausa, M
    Tübke, J
    [J]. JOURNAL OF POWER SOURCES, 2004, 136 (02) : 383 - 385
  • [42] LTCC for high-power RF applications?
    Spectrian Inc., 350 W. Java Drive, Sunnyvale, CA 94089, United States
    [J]. Adv Packag, 9 (46-50):
  • [43] HIGH-POWER LASER APPLICATIONS TO MEDICINE
    BONI, AA
    ROSEN, DI
    DAVIS, SJ
    POPPER, LA
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1988, 40 (03): : 449 - 467
  • [44] LIQUID SURFACE COATING FOR OPTICAL COMPONENTS USED IN HIGH-POWER LASER APPLICATIONS
    CHRAPLYVY, AR
    [J]. APPLIED OPTICS, 1977, 16 (09): : 2491 - 2494
  • [45] High-power Accelerator for Environmental Applications
    Kuk, Seung-Han
    Kim, Sung-Myun
    Kang, Won-Gu
    Han, Bumsoo
    Kuksanov, Nikolai K.
    Jeong, Kwang-Young
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 59 (06) : 3485 - 3488
  • [46] PICOSECOND HIGH-POWER SWITCHING AND APPLICATIONS
    MOUROU, G
    KNOX, W
    WILLIAMSON, S
    [J]. LASER FOCUS WITH FIBEROPTIC TECHNOLOGY, 1982, 18 (04): : 97 - &
  • [47] FAST HIGH-POWER OPTICAL SWITCH
    ABOITES, V
    BALDWIN, KJ
    CROFTS, GJ
    DAMZEN, MJ
    [J]. OPTICS COMMUNICATIONS, 1993, 98 (4-6) : 298 - 302
  • [48] DYE HIGH-POWER OPTICAL SWITCH
    ABOITES, V
    BALDWIN, KJ
    CROFTS, GJ
    DAMZEN, MJ
    [J]. REVISTA MEXICANA DE FISICA, 1993, 39 (04) : 581 - 587
  • [49] OPTICAL RESONATORS FOR A HIGH-POWER FEL
    BOGATOVA, GA
    CHEBURKIN, NV
    PEREBEYNOS, VV
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 359 (1-2): : 61 - 62
  • [50] COMPRESSION OF HIGH-POWER OPTICAL PULSES
    ROLLAND, C
    CORKUM, PB
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (03) : 641 - 647