Cerebral arteries: Fully automated segmentation from CT angiography - A feasibility study

被引:15
|
作者
Manniesing, Rashindra [1 ,2 ]
Viergever, Max A. [3 ]
van der Lugt, Aad [2 ]
Niessen, Wiro J. [1 ,2 ]
机构
[1] Erasmus MC Univ, Med Ctr, Dept Med Informat, NL-3015 GE Rotterdam, Netherlands
[2] Erasmus MC Univ, Med Ctr, Dept Radiol, NL-3015 GE Rotterdam, Netherlands
[3] Univ Utrecht, Med Ctr, Image Sci Inst, Utrecht, Netherlands
关键词
D O I
10.1148/radiol.2473070436
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The purpose of this study was to retrospectively assess the feasibility of a fully automated image postprocessing tool for the segmentation of the arterial cerebrovasculature from computed tomographic (CT) angiography in 27 patients (nine men, 18 women; mean age, 55 years; age range, 33-76 years) with subarachnoid hemorrhage. The institutional review board approved this study, and informed consent was waived. The proposed method, which does not require the acquisition of an additional CT scan for bone suppression, consists of the following: (a) automatic detection of the main arteries for initialization, (b) segmentation of these arteries through the skull base, and (c) suppression of the large veins near the skull. The parameters of this method were optimized on the training subset of nine patients, and the method was successful at segmentation of the arteries in 15 (83%) of the 18 remaining patients. The difference between automatic and manual diameter measurements was 0.0 mm +/- 0.4 (standard deviation). The study results showed that fully automated segmentation of the cerebral arteries is feasible.
引用
收藏
页码:841 / 846
页数:6
相关论文
共 50 条
  • [41] Automated pericardial fat quantification from coronary magnetic resonance angiography: feasibility study
    Ding, Xiaowei
    Pang, Jianing
    Ren, Zhou
    Diaz-Zamudio, Mariana
    Jiang, Chenfanfu
    Fan, Zhaoyang
    Berman, Daniel S.
    Li, Debiao
    Terzopoulos, Demetri
    Slomka, Piotr J.
    Dey, Damini
    [J]. JOURNAL OF MEDICAL IMAGING, 2016, 3 (01)
  • [42] Fully Automated Thrombus Segmentation on CT Images of Patients with Acute Ischemic Stroke
    Mojtahedi, Mahsa
    Kappelhof, Manon
    Ponomareva, Elena
    Tolhuisen, Manon
    Jansen, Ivo
    Bruggeman, Agnetha A. E.
    Dutra, Bruna G.
    Yo, Lonneke
    LeCouffe, Natalie
    Hoving, Jan W.
    van Voorst, Henk
    Brouwer, Josje
    Terreros, Nerea Arrarte
    Konduri, Praneeta
    Meijer, Frederick J. A.
    Appelman, Auke
    Treurniet, Kilian M.
    Coutinho, Jonathan M.
    Roos, Yvo
    van Zwam, Wim
    Dippel, Diederik
    Gavves, Efstratios
    Emmer, Bart J.
    Majoie, Charles
    Marquering, Henk
    [J]. DIAGNOSTICS, 2022, 12 (03)
  • [43] Automated CT segmentation and analysis for acute middle cerebral artery stroke
    Maldjian, JA
    Chalela, J
    Kasner, SE
    Liebeskind, D
    Detre, JA
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2001, 22 (06) : 1050 - 1055
  • [44] Fully automatic model-based calcium segmentation and scoring in coronary CT angiography
    Eilot, Dov
    Goldenberg, Roman
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (04) : 595 - 608
  • [45] Fully automatic model-based calcium segmentation and scoring in coronary CT angiography
    Dov Eilot
    Roman Goldenberg
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9 : 595 - 608
  • [46] Level set based cerebral vasculature segmentation and diameter quantification in CT angiography
    Manniesing, R
    Velthuis, BK
    van Leeuwen, MS
    van der Schaaf, IC
    van Laar, PJ
    Niessen, WJ
    [J]. MEDICAL IMAGE ANALYSIS, 2006, 10 (02) : 200 - 214
  • [47] Fully automated liver segmentation from SPIR image series
    Goceri, Evgin
    Gurcan, Metin N.
    Dicle, Oguz
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 53 : 265 - 278
  • [48] Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model
    Cai, Weixing
    Zhao, Binghui
    Conover, David
    Liu, Jiangkun
    Ning, Ruola
    [J]. MEDICAL PHYSICS, 2012, 39 (01) : 543 - 553
  • [49] Automated Detection and Segmentation of Mediastinal and Axillary Lymph Nodes from CT Using Foveal Fully Convolutional Networks
    Carolus, Heike
    Iuga, Andra-Iza
    Brosch, Tom
    Wiemker, Rafael
    Thiele, Frank
    Hoeink, Anna
    Maintz, David
    Puesken, Michael
    Klinder, Tobias
    [J]. MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [50] Segmentation of cerebral vessels and aneurysms from MR angiography data
    Wilson, DL
    Noble, JA
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING, 1997, 1230 : 423 - 428