Fe@Pt core-shell nanoparticles as electrocatalyst for oxygen reduction reaction in acidic media

被引:11
|
作者
Huang, Yanli [1 ,2 ,3 ]
Tan, Zhan [1 ,2 ,3 ]
Wu, Huimin [1 ,2 ,3 ]
Feng, Chuanqi [1 ,2 ,3 ]
Ding, Yu [4 ]
机构
[1] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Hubei, Peoples R China
[2] Hubei Univ, Key Lab Synth & Applicat Organ Funct Mol, Minist Educ, Wuhan 430062, Hubei, Peoples R China
[3] Hubei Univ, Coll Chem & Chem Engn, Wuhan 430062, Hubei, Peoples R China
[4] Hubei Engn Univ, Coll Chem & Mat Sci, Xiaogan 432000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe@Pt nanoparticles; Core-shell structure; Oxygen reduction reaction; fuel cell; FUEL-CELLS; ELECTROCHEMICAL SENSOR; HYDROGEN-PEROXIDE; CARBON NANOTUBES; CATALYSTS; ALLOY; DESIGN; CU; PD; FUNCTIONALIZATION;
D O I
10.1007/s11581-017-2186-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To settle the drawbacks of non-cost-effective and enhance the electrocatalytic performance of Pt/C, Fe@Pt core-shell nanoparticles supported by Vulcan XC-72 have been designed and synthetized successfully. The synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy, whereas the electrochemical analyses were obtained by electrochemical impedance spectroscopy, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. Results suggest that the onset potential of oxygen reduction reaction on the Fe@Pt/C is about 0.6 V (vs. Hg/Hg2Cl2) in O-2-saturated 0.5 M H2SO4, which shifts positively more than 30 mV compared with that of Pt/C. The corresponding electron transfer number is 4, meaning the reduction reaction mainly occurred through a 4-electron pathway. More importantly, the Fe@Pt/C has an excellent stability and better catalytic performance towards oxygen reduction reaction activity compared with Pt/C. Thus, Fe@Pt/C could be utilized as promising cathode catalysts in proton exchange membrane fuel cells.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 50 条
  • [41] The activity origin of core-shell and alloy AgCu bimetallic nanoparticles for the oxygen reduction reaction
    Zhang, Nan
    Chen, Fuyi
    Wu, Xiaoqiang
    Wang, Qiao
    Qaseem, Adnan
    Xia, Zhenhai
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (15) : 7043 - 7054
  • [42] Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction
    Jin, Hui
    Xu, Zhewei
    Hu, Zhi-Yi
    Yin, Zhiwen
    Wang, Zhao
    Deng, Zhao
    Wei, Ping
    Feng, Shihao
    Dong, Shunhong
    Liu, Jinfeng
    Luo, Sicheng
    Qiu, Zhaodong
    Zhou, Liang
    Mai, Liqiang
    Su, Bao-Lian
    Zhao, Dongyuan
    Liu, Yong
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [43] Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction
    Hui Jin
    Zhewei Xu
    Zhi-Yi Hu
    Zhiwen Yin
    Zhao Wang
    Zhao Deng
    Ping Wei
    Shihao Feng
    Shunhong Dong
    Jinfeng Liu
    Sicheng Luo
    Zhaodong Qiu
    Liang Zhou
    Liqiang Mai
    Bao-Lian Su
    Dongyuan Zhao
    Yong Liu
    Nature Communications, 14
  • [44] High-Index Core-Shell Ni-Pt Nanoparticles as Oxygen Reduction Electrocatalysts
    Leteba, Gerard M.
    Mitchell, David R. G.
    Levecque, Pieter B. J.
    Macheli, Lebohang
    van Steen, Eric
    Lang, Candace, I
    ACS APPLIED NANO MATERIALS, 2020, 3 (06) : 5718 - 5731
  • [45] Atomic controlled shell thickness on Pt@Pt 3 Ti core-shell nanoparticles for efficient and durable oxygen reduction
    Jiang, Haoran
    Wang, Zichen
    Chen, Suhao
    Xiao, Yong
    Zhu, Yu
    Wu, Wei
    Chen, Runzhe
    Cheng, Niancai
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 205 : 212 - 220
  • [46] Ni-Pd core-shell nanoparticles with Pt-like oxygen reduction electrocatalytic performance in both acidic and alkaline electrolytes
    Jiang, Jun
    Gao, Han
    Lu, Shu
    Zhang, Xing
    Wang, Chu-Ya
    Wang, Wei-Kang
    Yu, Han-Qing
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (19) : 9233 - 9240
  • [47] Core-shell nanostructure supported Pt catalyst with improved electrocatalytic stability in oxygen reduction reaction
    Kim, Do-Young
    Han, Sang-Beom
    Lee, Young-Woo
    Park, Kyung-Won
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 137 (03) : 704 - 708
  • [48] Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction
    Li, Xiaowei
    Liu, Juanying
    He, Wei
    Huang, Qinhong
    Yang, Hui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 344 (01) : 132 - 136
  • [49] Pt@PdxCuy/C Core-Shell Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells
    Cochell, T.
    Manthiram, A.
    LANGMUIR, 2012, 28 (02) : 1579 - 1587
  • [50] First principles study on the oxygen reduction reaction of Ir@Pt core-shell structure
    Lu, Yanli
    Zhang, Haipeng
    Wang, Yifan
    Chen, Zheng
    CHEMICAL PHYSICS, 2022, 552