Optimizing large parameter sets in variational quantum Monte Carlo

被引:92
|
作者
Neuscamman, Eric [1 ]
Umrigar, C. J. [2 ]
Chan, Garnet Kin-Lic [3 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[3] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-ORBITAL METHODS;
D O I
10.1103/PhysRevB.85.045103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a technique for optimizing hundreds of thousands of variational parameters in variational quantum Monte Carlo. By introducing iterative Krylov subspace solvers and by multiplying by the Hamiltonian and overlap matrices as they are sampled, we remove the need to construct and store these matrices and thus bypass the most expensive steps of the stochastic reconfiguration and linear method optimization techniques. We demonstrate the effectiveness of this approach by using stochastic reconfiguration to optimize a correlator product state wave function with a Pfaffian reference for four example systems. In two examples on the two dimensional Fermionic Hubbard model, we study 16 and 64 site lattices, recovering energies accurate to 1% in the smaller lattice and predicting particle-hole phase separation in the larger. In two examples involving an ab initio Hamiltonian, we investigate the potential energy curve of a symmetrically dissociated 4 x 4 hydrogen lattice as well as the singlet-triplet gap in free base porphin. In the hydrogen system we recover 98% or more of the correlation energy at all geometries, while for porphin we compute the gap in a 24 orbital active space to within 0.02 eV of the exact result. The number of variational parameters in these examples ranges from 4 x 10(3) to 5 x 10(5).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum Monte Carlo and variational approaches to the Holstein model
    Hohenadler, M
    Evertz, HG
    von der Linden, W
    [J]. PHYSICAL REVIEW B, 2004, 69 (02)
  • [22] An improved transition matrix for variational quantum Monte Carlo
    Mella, M
    Luchow, A
    Anderson, JB
    [J]. CHEMICAL PHYSICS LETTERS, 1997, 265 (3-5) : 467 - 472
  • [23] Variational quantum Monte Carlo calculations for solid surfaces
    Bahnsen, R
    Eckstein, H
    Schattke, W
    Fitzer, N
    Redmer, R
    [J]. PHYSICAL REVIEW B, 2001, 63 (23):
  • [24] VARIATIONAL COMPUTATIONS FOR EXCITONS IN QUANTUM DOTS: A QUANTUM MONTE CARLO STUDY
    Yildiz, A.
    Sakiroglu, S.
    Dogan, U.
    Akgungor, K.
    Epik, H.
    Sokmen, I.
    Sari, H.
    Ergun, Y.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (01): : 119 - 130
  • [25] Confidence and efficiency scaling in variational quantum Monte Carlo calculations
    Delyon, F.
    Bernu, B.
    Holzmann, Markus
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [26] VARIATIONAL AND DIFFUSION MONTE-CARLO TECHNIQUES FOR QUANTUM CLUSTERS
    BARNETT, RN
    WHALEY, KB
    [J]. PHYSICAL REVIEW A, 1993, 47 (05): : 4082 - 4098
  • [27] Variational and diffusion quantum Monte Carlo calculations with the CASINO code
    Needs, R. J.
    Towler, M. D.
    Drummond, N. D.
    Lopez Rios, P.
    Trail, J. R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (15):
  • [28] Pseudopotential variational quantum Monte Carlo approach to bcc lithium
    Yao, G
    Xu, JG
    Wang, XW
    [J]. PHYSICAL REVIEW B, 1996, 54 (12) : 8393 - 8397
  • [29] Markov chain Monte Carlo enhanced variational quantum algorithms
    Patti, Taylor L.
    Shehab, Omar
    Najafi, Khadijeh
    Yelin, Susanne F.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (01)
  • [30] Effective quantum variational Monte Carlo study of hubbard model
    Yanagisawa, Takashi
    Hase, Izumi
    Yamaji, Kunihiko
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 486 - 488