Modification of the Peierls-Nabarro model for misfit dislocation

被引:5
|
作者
Zhang, Shujun [1 ]
Wang, Shaofeng [1 ]
机构
[1] Chongqing Univ, Dept Phys, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
interfacial misfit dislocation; the energy of misfit dislocation; EQUATION;
D O I
10.1088/1674-1056/ab8459
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a misfit dislocation, the balance equations satisfied by the displacement fields are modified, and an extra term proportional to the second-order derivative appears in the resulting misfit equation compared with the equation derived by Yao et al. This second-order derivative describes the lattice discreteness effect that arises from the surface effect. The core structure of a misfit dislocation and the change in interfacial spacing that it induces are investigated theoretically in the framework of an improved Peierls-Nabarro equation in which the effect of discreteness is fully taken into account. As an application, the structure of the misfit dislocation for a honeycomb structure in a two-dimensional heterostructure is presented.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Improvement of nonlocal Peierls-Nabarro models
    Liu, Guisen
    Cheng, Xi
    Wang, Jian
    Chen, Kaiguo
    Shen, Yao
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 131 : 69 - 77
  • [42] A generalized Peierls-Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu
    Xiang, Yang
    Wei, He
    Ming, Pingbing
    E, Weinan
    ACTA MATERIALIA, 2008, 56 (07) : 1447 - 1460
  • [43] EXACT DETERMINATION OF THE PEIERLS-NABARRO FREQUENCY
    BOESCH, R
    WILLIS, CR
    PHYSICAL REVIEW B, 1989, 39 (01): : 361 - 368
  • [44] Peierls-Nabarro modelling of dislocations in diopside
    Metsue, Arnaud
    Carrez, Philippe
    Denoual, Christophe
    Mainprice, David
    Cordier, Patrick
    PHYSICS AND CHEMISTRY OF MINERALS, 2010, 37 (10) : 711 - 720
  • [45] The topological origin of the Peierls-Nabarro barrier
    Hocking, Brook J.
    Ansell, Helen S.
    Kamien, Randall D.
    Machon, Thomas
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2258):
  • [46] The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model
    Fino, A. Z.
    Ibrahim, H.
    Monneau, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) : 258 - 293
  • [47] REVISIT OF THE PEIERLS-NABARRO MODEL FOR EDGE DISLOCATIONS IN HILBERT SPACE
    Gao, Yuan
    Liu, Jian-Guo
    Luo, Tao
    Xiang, Yang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06): : 3177 - 3207
  • [48] Dislocation modelling in Ti2AlN MAX phase based on the Peierls-Nabarro model
    Gouriet, Karine
    Carrez, Philippe
    Cordier, Patrick
    Guitton, Antoine
    Joulain, Anne
    Thilly, Ludovic
    Tromas, Christophe
    PHILOSOPHICAL MAGAZINE, 2015, 95 (23) : 2539 - 2552
  • [49] Existence and uniqueness of solutions to the Peierls-Nabarro model in anisotropic media
    Gao, Yuan
    Scott, James M.
    NONLINEARITY, 2024, 37 (02)
  • [50] PNADIS: An automated Peierls-Nabarro analyzer for dislocation core structure and slip resistance
    Zhang, S. H.
    Legut, D.
    Zhang, R. F.
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 240 : 60 - 73